Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell ; 184(9): 2316-2331.e15, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33773105

RESUMO

Most human monoclonal antibodies (mAbs) neutralizing SARS-CoV-2 recognize the spike (S) protein receptor-binding domain and block virus interactions with the cellular receptor angiotensin-converting enzyme 2. We describe a panel of human mAbs binding to diverse epitopes on the N-terminal domain (NTD) of S protein from SARS-CoV-2 convalescent donors and found a minority of these possessed neutralizing activity. Two mAbs (COV2-2676 and COV2-2489) inhibited infection of authentic SARS-CoV-2 and recombinant VSV/SARS-CoV-2 viruses. We mapped their binding epitopes by alanine-scanning mutagenesis and selection of functional SARS-CoV-2 S neutralization escape variants. Mechanistic studies showed that these antibodies neutralize in part by inhibiting a post-attachment step in the infection cycle. COV2-2676 and COV2-2489 offered protection either as prophylaxis or therapy, and Fc effector functions were required for optimal protection. Thus, natural infection induces a subset of potent NTD-specific mAbs that leverage neutralizing and Fc-mediated activities to protect against SARS-CoV-2 infection using multiple functional attributes.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Substâncias Protetoras/farmacologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Ligação Competitiva , COVID-19/imunologia , COVID-19/virologia , Quimiocinas/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese/genética , Testes de Neutralização , Domínios Proteicos , Células Vero
2.
Cell ; 184(17): 4414-4429.e19, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416146

RESUMO

Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.


Assuntos
Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Sequência Conservada/imunologia , Epitopos/imunologia , Proteínas Virais/imunologia , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/química , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/metabolismo , Células Vero , Proteínas Virais/química , Liberação de Vírus
3.
Cell ; 184(17): 4430-4446.e22, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34416147

RESUMO

Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.


Assuntos
Alphavirus/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Proteínas Virais/imunologia , Liberação de Vírus/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular , Vírus Chikungunya/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina/imunologia , Encefalomielite Equina/virologia , Mapeamento de Epitopos , Feminino , Cavalos , Humanos , Concentração de Íons de Hidrogênio , Articulações/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Ligação Proteica , RNA Viral/metabolismo , Receptores Fc/metabolismo , Temperatura , Vírion/metabolismo , Internalização do Vírus
4.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716452

RESUMO

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Sítios de Ligação/genética , COVID-19/metabolismo , COVID-19/prevenção & controle , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Camundongos Transgênicos , Testes de Neutralização , Ligação Proteica , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Análise de Sobrevida
5.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823390

RESUMO

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza B , Influenza Humana , Neuraminidase , Neuraminidase/imunologia , Humanos , Vírus da Influenza B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
6.
Cell ; 174(4): 938-952.e13, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096313

RESUMO

Antibodies are promising post-exposure therapies against emerging viruses, but which antibody features and in vitro assays best forecast protection are unclear. Our international consortium systematically evaluated antibodies against Ebola virus (EBOV) using multidisciplinary assays. For each antibody, we evaluated epitopes recognized on the viral surface glycoprotein (GP) and secreted glycoprotein (sGP), readouts of multiple neutralization assays, fraction of virions left un-neutralized, glycan structures, phagocytic and natural killer cell functions elicited, and in vivo protection in a mouse challenge model. Neutralization and induction of multiple immune effector functions (IEFs) correlated most strongly with protection. Neutralization predominantly occurred via epitopes maintained on endosomally cleaved GP, whereas maximal IEF mapped to epitopes farthest from the viral membrane. Unexpectedly, sGP cross-reactivity did not significantly influence in vivo protection. This comprehensive dataset provides a rubric to evaluate novel antibodies and vaccine responses and a roadmap for therapeutic development for EBOV and related viruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Ebolavirus/imunologia , Epitopos/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
7.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525756

RESUMO

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Regiões Determinantes de Complementaridade , Reações Cruzadas , Ebolavirus/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Furões , Cobaias , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares
8.
Cell ; 164(3): 392-405, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26806128

RESUMO

Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Animais , Reações Cruzadas , Modelos Animais de Doenças , Mapeamento de Epitopos , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Modelos Moleculares , Mutagênese , Uganda
9.
Immunity ; 52(2): 388-403.e12, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32023489

RESUMO

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Quimioterapia Combinada , Epitopos , Feminino , Glicoproteínas/química , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mimetismo Molecular , Conformação Proteica
10.
Immunity ; 49(2): 363-374.e10, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30029854

RESUMO

Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Células 3T3 , Adulto , Animais , Células CHO , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Modelos Animais de Doenças , Drosophila , Feminino , Furões , Cobaias , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células THP-1 , Células Vero
11.
PLoS Pathog ; 19(10): e1011722, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812640

RESUMO

Sequential dengue virus (DENV) infections often generate neutralizing antibodies against all four DENV serotypes and sometimes, Zika virus. Characterizing cross-flavivirus broadly neutralizing antibody (bnAb) responses can inform countermeasures that avoid enhancement of infection associated with non-neutralizing antibodies. Here, we used single cell transcriptomics to mine the bnAb repertoire following repeated DENV infections. We identified several new bnAbs with comparable or superior breadth and potency to known bnAbs, and with distinct recognition determinants. Unlike all known flavivirus bnAbs, which are IgG1, one newly identified cross-flavivirus bnAb (F25.S02) was derived from IgA1. Both IgG1 and IgA1 versions of F25.S02 and known bnAbs displayed neutralizing activity, but only IgG1 enhanced infection in monocytes expressing IgG and IgA Fc receptors. Moreover, IgG-mediated enhancement of infection was inhibited by IgA1 versions of bnAbs. We demonstrate a role for IgA in flavivirus infection and immunity with implications for vaccine and therapeutic strategies.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Amplamente Neutralizantes , Transcriptoma , Anticorpos Neutralizantes , Imunoglobulina G , Imunoglobulina A , Anticorpos Antivirais
12.
J Virol ; 97(7): e0159622, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37395646

RESUMO

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Assuntos
Anticorpos Antivirais , COVID-19 , Epitopos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Epitopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Domínios Proteicos , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Modelos Moleculares , Linhagem Celular
13.
J Virol ; 96(11): e0007122, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575481

RESUMO

Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Hipermutação Somática de Imunoglobulina , Zika virus , Animais , Anticorpos Monoclonais/genética , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Regiões Determinantes de Complementaridade/genética , Epitopos/genética , Mutação , Coelhos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia
14.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597214

RESUMO

Zika virus (ZIKV), a mosquito-transmitted flavivirus, caused a large epidemic in Latin America between 2015 and 2017. Effective ZIKV vaccines and treatments are urgently needed to prevent future epidemics and severe disease sequelae. People infected with ZIKV develop strongly neutralizing antibodies linked to viral clearance and durable protective immunity. To understand the mechanisms of protective immunity and to support the development of ZIKV vaccines, we characterize here a strongly neutralizing antibody, B11F, isolated from a patient who recovered from ZIKV. Our results indicate that B11F targets a complex epitope on the virus that spans domains I and III of the envelope glycoprotein. While previous studies point to quaternary epitopes centered on domain II of the ZIKV E glycoprotein as targets of strongly neutralizing and protective human antibodies, we uncover a new site spanning domains I and III as a target of strongly neutralizing human antibodies.IMPORTANCE People infected with Zika virus develop durable neutralizing antibodies that prevent repeat infections. In the current study, we characterize a ZIKV-neutralizing human monoclonal antibody isolated from a patient after recovery. Our studies establish a novel site on the viral envelope that is targeted by human neutralizing antibodies. Our results are relevant to understanding how antibodies block infection and to guiding the design and evaluation of candidate vaccines.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Epitopos , Proteínas do Envelope Viral , Infecção por Zika virus , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Chlorocebus aethiops , Epitopos/imunologia , Humanos , Ligação Proteica , Domínios Proteicos , Células Vero , Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
15.
Nature ; 540(7633): 443-447, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27819683

RESUMO

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies from subjects that were previously infected with ZIKV. We show that a subset of antibodies recognize diverse epitopes on the envelope (E) protein and exhibit potent neutralizing activity. One of the most inhibitory antibodies, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African and Asian-American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. Monoclonal antibody treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human antibodies can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.


Assuntos
Anticorpos Neutralizantes/imunologia , Doenças Fetais/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Replicação Viral/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia , Zika virus/crescimento & desenvolvimento , Zika virus/imunologia , África , América , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos , Ásia , Linfócitos B/imunologia , Modelos Animais de Doenças , Mapeamento de Epitopos , Feminino , Doenças Fetais/imunologia , Doenças Fetais/virologia , Feto/imunologia , Feto/virologia , Humanos , Masculino , Camundongos , Modelos Moleculares , Placenta/imunologia , Placenta/virologia , Gravidez , Multimerização Proteica , Taxa de Sobrevida , Proteínas Virais/química , Proteínas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Infecção por Zika virus/patologia
16.
Proc Natl Acad Sci U S A ; 116(5): 1591-1596, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642974

RESUMO

Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus in the Flaviviridae family. In contrast to most other insect-transmitted flaviviruses, ZIKV also can be transmitted sexually and from mother to fetus in humans. During recent outbreaks, ZIKV infections have been linked to microcephaly, congenital disease, and Guillain-Barré syndrome. Neutralizing antibodies have potential as therapeutic agents. We report here a 4-Å-resolution cryo-electron microscopy structure of the ZIKV virion in complex with Fab fragments of the potently neutralizing human monoclonal antibody ZIKV-195. The footprint of the ZIKV-195 Fab fragment expands across two adjacent envelope (E) protein protomers. ZIKV neutralization by this antibody is presumably accomplished by cross-linking the E proteins, which likely prevents formation of E protein trimers required for fusion of the viral and cellular membranes. A single dose of ZIKV-195 administered 5 days after virus inoculation showed marked protection against lethality in a stringent mouse model of infection.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Microscopia Crioeletrônica/métodos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vacinação/métodos , Proteínas do Envelope Viral/imunologia
17.
Proc Natl Acad Sci U S A ; 115(22): E4990-E4999, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29769329

RESUMO

The insulin-responsive 12-transmembrane transporter GLUT4 changes conformation between an inward-open state and an outward-open state to actively facilitate cellular glucose uptake. Because of the difficulties of generating conformational mAbs against complex and highly conserved membrane proteins, no reliable tools exist to measure GLUT4 at the cell surface, follow its trafficking, or detect the conformational state of the protein. Here we report the isolation and characterization of conformational mAbs that recognize the extracellular and intracellular domains of GLUT4, including mAbs that are specific for the inward-open and outward-open states of GLUT4. mAbs against GLUT4 were generated using virus-like particles to present this complex membrane protein in its native conformation and using a divergent host species (chicken) for immunization to overcome immune tolerance. As a result, the isolated mAbs recognize conformational epitopes on native GLUT4 in cells, with apparent affinities as high as 1 pM and with specificity for GLUT4 across the human membrane proteome. Epitope mapping using shotgun mutagenesis alanine scanning across the 509 amino acids of GLUT4 identified the binding epitopes for mAbs specific for the states of GLUT4 and allowed the comprehensive identification of the residues that functionally control the GLUT4 inward-open and outward-open states. The mAbs identified here will be valuable molecular tools for monitoring GLUT4 structure, function, and trafficking, for differentiating GLUT4 conformational states, and for the development of novel therapeutics for the treatment of diabetes.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Transportador de Glucose Tipo 4/imunologia , Transportador de Glucose Tipo 4/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Galinhas , Mapeamento de Epitopos , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/genética , Células HEK293 , Humanos , Vírus da Leucemia Murina/genética , Modelos Moleculares , Domínios Proteicos , Vacinas de Partículas Semelhantes a Vírus/química
18.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068427

RESUMO

Increasing evidence indicates that broadly neutralizing antibodies (bNAbs) play an important role in immune-mediated control of hepatitis C virus (HCV) infection, but the relative contribution of neutralizing antibodies targeting antigenic sites across the HCV envelope (E1 and E2) proteins is unclear. Here, we isolated thirteen E1E2-specific monoclonal antibodies (MAbs) from B cells of a single HCV-infected individual who cleared one genotype 1a infection and then became persistently infected with a second genotype 1a strain. These MAbs bound six distinct discontinuous antigenic sites on the E1 protein, the E2 protein, or the E1E2 heterodimer. Three antigenic sites, designated AS108, AS112 (an N-terminal E1 site), and AS146, were distinct from previously described antigenic regions (ARs) 1 to 5 and E1 sites. Antibodies targeting four sites (AR3, AR4-5, AS108, and AS146) were broadly neutralizing. These MAbs also displayed distinct patterns of relative neutralizing potency (i.e., neutralization profiles) across a panel of diverse HCV strains, which led to complementary neutralizing breadth when they were tested in combination. Overall, this study demonstrates that HCV bNAb epitopes are not restricted to previously described antigenic sites, expanding the number of sites that could be targeted for vaccine development.IMPORTANCE Worldwide, more than 70 million people are infected with hepatitis C virus (HCV), which is a leading cause of hepatocellular carcinoma and liver transplantation. Despite the development of potent direct acting antivirals (DAAs) for HCV treatment, a vaccine is urgently needed due to the high cost of treatment and the possibility of reinfection after cure. Induction of multiple broadly neutralizing antibodies (bNAbs) that target distinct epitopes on the HCV envelope proteins is one approach to vaccine development. However, antigenic sites targeted by bNAbs in individuals with spontaneous control of HCV have not been fully defined. In this study, we characterize 13 monoclonal antibodies (MAbs) from a single person who cleared an HCV infection without treatment, and we identify 3 new sites targeted by neutralizing antibodies. The sites targeted by these MAbs could inform HCV vaccine development.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Epitopos de Linfócito B/imunologia , Células HEK293 , Humanos
19.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728263

RESUMO

The human B cell response to natural filovirus infections early after recovery is poorly understood. Previous serologic studies suggest that some Ebola virus survivors exhibit delayed antibody responses with low magnitude and quality. Here, we sought to study the population of individual memory B cells induced early in convalescence. We isolated monoclonal antibodies (MAbs) from memory B cells from four survivors treated for Ebola virus disease (EVD) 1 or 3 months after discharge from the hospital. At the early time points postrecovery, the frequency of Ebola-specific B cells was low and dominated by clones that were cross-reactive with both Ebola glycoprotein (GP) and with the secreted GP (sGP) form. Of 25 MAbs isolated from four donors, only one exhibited neutralization activity. This neutralizing MAb, designated MAb EBOV237, recognizes an epitope in the glycan cap of the surface glycoprotein. In vivo murine lethal challenge studies showed that EBOV237 conferred protection when given prophylactically at a level similar to that of the ZMapp component MAb 13C6. The results suggest that the human B cell response to EVD 1 to 3 months postdischarge is characterized by a paucity of broad or potent neutralizing clones. However, the neutralizing epitope in the glycan cap recognized by EBOV237 may play a role in the early human antibody response to EVD and should be considered in rational design strategies for new Ebola virus vaccine candidates.IMPORTANCE The pathogenesis of Ebola virus disease (EVD) in humans is complex, and the mechanisms contributing to immunity are poorly understood. In particular, it appears that the quality and magnitude of the human B cell response early after recovery from EVD may be reduced compared to most viral infections. Here, we isolated human monoclonal antibodies from B cells of four survivors of EVD at 1 or 3 months after hospital discharge. Ebola-specific memory B cells early in convalescence were low in frequency, and the antibodies they encoded demonstrated poor neutralizing potencies. One neutralizing antibody that protected mice from lethal infection, EBOV237, was identified in the panel of 25 human antibodies isolated. Recognition of the glycan cap epitope recognized by EBOV237 suggests that this antigenic site should be considered in vaccine design and treatment strategies for EVD.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Memória Imunológica , Sobreviventes , Proteínas do Envelope Viral/imunologia , Feminino , Humanos , Masculino , Estados Unidos
20.
PLoS Pathog ; 13(12): e1006735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253863

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.


Assuntos
Hepacivirus/genética , Hepacivirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Hepacivirus/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa