Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Basic Res Cardiol ; 112(1): 1, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837311

RESUMO

Chronic increased workload of the human heart causes ventricular hypertrophy, re-expression of the atrial essential myosin light chain (hALC-1), and improved contractile function. Although hALC-1 is an important positive inotropic regulator of the human heart, little is known about its regulation. Therefore, we investigated the role of the sex hormone 17ß-estradiol (E2) on hALC-1 gene expression, the underlying molecular mechanisms, and the impact of this regulatory process on cardiac contractile function. We showed that E2 attenuated hALC-1 expression in human atrial tissues of both sexes and in human ventricular AC16 cells. E2 induced the nuclear translocation of estrogen receptor alpha (ERα) and hALC-1 in AC16 cells, where they cooperatively regulate the transcriptional activity of hALC-1 gene promoter. E2-activated ERα required the estrogen response element (ERE) motif within the hALC-1 gene promoter to reduce its transcriptional activity (vehicle: 15.55 ± 4.80 vs. E2: 6.51 ± 3.69; ~2 fold). This inhibitory effect was potentiated in the presence of hALC-1 (vehicle: 11.13 ± 3.66 vs. E2: 2.18 ± 1.10; ~5 fold), and thus, hALC-1 acts as a co-repressor of ERα-mediated transcription. Yeast two-hybrid screening of a human heart cDNA library revealed that ERα interacts physically with hALC-1 in the presence of E2. This interaction was confirmed by Co-Immunoprecipitation and immunofluorescence in human atrium. As a further novel effect, we showed that chronic E2-treatment of adult mouse cardiomyocytes overexpressing hALC-1 resulted in reduced cell-shortening amplitude and twitching kinetics of these cells independent of Ca2+ activation levels. Together, our data showed that the expression of hALC-1 gene is, at least partly, regulated by E2/ERα, while hALC-1 acts as a co-repressor. The inotropic effect of hALC-1 overexpression in cardiomyocytes can be significantly repressed by E2.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/genética , Contração Miocárdica/fisiologia , Cadeias Leves de Miosina/biossíntese , Animais , Western Blotting , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Reação em Cadeia da Polimerase , Técnicas do Sistema de Duplo-Híbrido
2.
Arch Toxicol ; 89(7): 1057-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24961358

RESUMO

Although kidney is a target organ of arsenic cytotoxicity, the underlying mechanisms of arsenic-induced nephrotoxicity remain poorly understood. As tetramethylpyrazine (TMP) has recently been found to be a renal protectant in multiple kidney injuries, we hypothesize that TMP could suppress arsenic nephrotoxicity. In this study, human renal proximal tubular epithelial cell line HK-2 was used to elucidate the precise mechanisms of arsenic nephrotoxicity as well as the protective mechanism of TMP in these cells. Sodium arsenite exposure dramatically increased cellular reactive oxygen species (ROS) production, decreased levels of cellular glutathione (GSH), decreased cytochrome c oxidase activity and mitochondrial membrane potential, which indicated mitochondrial dysfunction. On the other hand, sodium arsenite activated pro-inflammatory signals, including ß-catenin, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK), tumor necrosis factor alpha and cyclooxygenase-2 (COX-2). Small molecule inhibitors of NF-κB and p38 MAPK blocked arsenic-induced COX-2 expression, suggesting arsenic-induced COX-2 up-regulation was NF-κB- and p38 MAPK-dependent. Finally, sodium arsenite induced autophagy in HK-2 cells at early phase (6 h) and the subsequent apoptosis at 24 h. Treatment by TMP or by the antioxidant N-acetylcysteine decreased arsenic-induced ROS production, enhanced GSH levels, prevented mitochondria dysfunction and suppressed the activation of pro-inflammatory signals and the development of autophagy and apoptosis. Our results suggested that TMP may be used as a new potential therapeutic agent to prevent arsenic-induced nephrotoxicity by suppressing these pathological processes.


Assuntos
Apoptose/efeitos dos fármacos , Arsenitos/toxicidade , Autofagia/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/química , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pirazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Sódio/toxicidade , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Citoproteção , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fatores de Tempo
3.
J Biol Chem ; 287(22): 18429-39, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22493506

RESUMO

The role of serine palmitoyltransferase (SPT) and de novo ceramide biosynthesis in cardiac ceramide and sphingomyelin metabolism is unclear. To determine whether the de novo synthetic pathways, rather than ceramide uptake from circulating lipoproteins, is important for heart ceramide levels, we created cardiomyocyte-specific deficiency of Sptlc2, a subunit of SPT. Heart-specific Sptlc2-deficient (hSptlc2 KO) mice had a >35% reduction in ceramide, which was limited to C18:0 and very long chain ceramides. Sphingomyelinase expression, and levels of sphingomyelin and diacylglycerol were unchanged. But surprisingly phospholipids and acyl CoAs contained increased saturated long chain fatty acids. hSptlc2 KO mice had decreased fractional shortening and thinning of the cardiac wall. While the genes regulating glucose and fatty acid metabolism were not changed, expression of cardiac failure markers and the genes involved in the formation of extracellular matrices were up-regulated in hSptlc2 KO hearts. In addition, ER-stress markers were up-regulated leading to increased apoptosis. These results suggest that Sptlc2-mediated de novo ceramide synthesis is an essential source of C18:0 and very long chain, but not of shorter chain, ceramides in the heart. Changes in heart lipids other than ceramide levels lead to cardiac toxicity.


Assuntos
Ceramidas/metabolismo , Coração/fisiopatologia , Miocárdio/enzimologia , Serina C-Palmitoiltransferase/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Células Cultivadas , Marcação In Situ das Extremidades Cortadas , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Serina C-Palmitoiltransferase/genética
4.
Biochim Biophys Acta ; 1811(2): 59-67, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21070867

RESUMO

Owing to its high fat content, the classical Western diet has a range of adverse effects on the heart, including enhanced inflammation, hypertrophy, and contractile dysfunction. Proinflammatory factors secreted by cardiac cells, which are under the transcriptional control of nuclear factor-κB (NF-κB), may contribute to heart failure and dilated cardiomyopathy. The underlying mechanisms are complex, since they are linked to systemic metabolic abnormalities and changes in cardiomyocyte phenotype. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate metabolism and are capable of limiting myocardial inflammation and hypertrophy via inhibition of NF-κB. Since PPARß/δ is the most prevalent PPAR isoform in the heart, we analyzed the effects of the PPARß/δ agonist GW501516 on inflammatory parameters. A high-fat diet induced the expression of tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-6, and enhanced the activity of NF-κB in the heart of mice. GW501516 abrogated this enhanced proinflammatory profile. Similar results were obtained when human cardiac AC16 cells exposed to palmitate were coincubated with GW501516. PPARß/δ activation by GW501516 enhanced the physical interaction between PPARß/δ and p65, which suggests that this mechanism may also interfere NF-κB transactivation capacity in the heart. GW501516-induced PPARß/δ activation can attenuate the inflammatory response induced in human cardiac AC16 cells exposed to the saturated fatty acid palmitate and in mice fed a high-fat diet. This is relevant, especially taking into account that PPARß/δ has been postulated as a potential target in the treatment of obesity and the insulin resistance state.


Assuntos
Coração/efeitos dos fármacos , Lipídeos/farmacologia , PPAR delta/metabolismo , PPAR beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Humanos , Inflamação/imunologia , Camundongos , Camundongos Knockout , Miocárdio/imunologia , PPAR delta/agonistas , PPAR beta/agonistas , Tiazóis/metabolismo , Fator de Transcrição RelA/metabolismo
5.
J Biol Chem ; 285(15): 11596-606, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20145242

RESUMO

In this study, we demonstrate that human cardiomyocytes (AC16) produce reactive oxygen species (ROS) and inflammatory cytokines in response to Trypanosoma cruzi. ROS were primarily produced by mitochondria, some of which diffused to cytosol of infected cardiomyocytes. These ROS resulted in an increase in 8-hydroxyguanine lesions and DNA fragmentation that signaled PARP-1 activation evidenced by poly(ADP-ribose) (PAR) modification of PARP-1 and other proteins in infected cardiomyocytes. Phenyl-alpha-tert-butylnitrone blocked the mitochondrial ROS (mtROS) formation, DNA damage, and PARP-1 activation in infected cardiomyocytes. Further inhibition studies demonstrated that ROS and PARP-1 signaled TNF-alpha and IL-1beta expression in infected cardiomyocytes. ROS directly signaled the nuclear translocation of RelA (p65), NF-kappaB activation, and cytokine gene expression. PARP-1 exhibited no direct interaction with p65 and did not signal its translocation to nuclei in infected cardiomyocytes. Instead, PARP-1 contributed to PAR modification of p65-interacting nuclear proteins and assembly of the NF-kappaB transcription complex. PJ34 (PARP-1 inhibitor) also prevented mitochondrial poly(ADP-ribosyl)ation (PARylation) and ROS formation. We conclude that T. cruzi-mediated mtROS provide primary stimulus for PARP-1-NF-kappaB activation and cytokine gene expression in infected cardiomyocytes. PAR modification of mitochondrial membranes then results in a feedback cycle of mtROS formation and DNA damage/PARP-1 activation. ROS, either through direct modulation of cytosolic NF-kappaB, or via PARP-1-dependent PAR modification of p65-interacting nuclear proteins, contributes to cytokine gene expression. Our results demonstrate a link between ROS and inflammatory responses in cardiomyocytes infected by T. cruzi and provide a clue to the pathomechanism of sustained inflammation in Chagas disease.


Assuntos
Citocinas/biossíntese , Miócitos Cardíacos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio , Fator de Transcrição RelA/metabolismo , Trypanosoma cruzi/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Citosol/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Inflamação , NF-kappa B/metabolismo , Transdução de Sinais
6.
J Biol Chem ; 284(37): 24705-14, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19584059

RESUMO

Estrogen receptor (ER)-mediated effects have been associated with the modulation of myocardial hypertrophy in animal models and in humans, but the regulation of ER expression in the human heart has not yet been analyzed. In various cell lines and tissues, multiple human estrogen receptor alpha (hERalpha) mRNA isoforms are transcribed from distinct promoters and differ in their 5'-untranslated regions. Using PCR-based strategies, we show that in the human heart the ERalpha mRNA is transcribed from multiple promoters, namely, A, B, C, and F, of which the F-promoter is most frequently used variant. Transient transfection reporter assays in a human cardiac myocyte cell line (AC16) with F-promoter deletion constructs demonstrated a negative regulatory region within this promoter. Site-directed mutagenesis and electrophoretic mobility shift assays indicated that NF-kappaB binds to this region. An inhibition of NF-kappaB activity by parthenolide significantly increased the transcriptional activity of the F-promoter. Increasing NF-kappaB expression by tumor necrosis factor-alpha reduced the expression of ERalpha, indicating that the NF-kappaB pathway inhibits expression of ERalpha in human cardiomyocytes. Finally, 17beta-estradiol induced the transcriptional activity of hERalpha promoters A, B, C, and F. In conclusion, inflammatory stimuli suppress hERalpha expression via activation and subsequent binding of NF-kappaB to the ERalpha F-promoter, and 17beta-estradiol/hERalpha may antagonize the inhibitory effect of NF-kappaB. This suggests interplay between estrogen/estrogen receptors and the pro-hypertrophic and inflammatory responses to NF-kappaB.


Assuntos
Receptor alfa de Estrogênio/biossíntese , Regulação da Expressão Gênica , Coração/fisiologia , Miocárdio/metabolismo , NF-kappa B/fisiologia , Transcrição Gênica , Regiões 5' não Traduzidas , Sequência de Bases , Deleção de Genes , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Transfecção
7.
Hum Mol Genet ; 17(12): 1814-20, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18337306

RESUMO

Mutations in mitochondrial DNA (mtDNA) tRNA genes can be considered functionally recessive because they result in a clinical or biochemical phenotype only when the percentage of mutant molecules exceeds a critical threshold value, in the range of 70-90%. We report a novel mtDNA mutation that contradicts this rule, since it caused a severe multisystem disorder and respiratory chain (RC) deficiency even at low levels of heteroplasmy. We studied a 13-year-old boy with clinical, radiological and biochemical evidence of a mitochondrial disorder. We detected a novel heteroplasmic C>T mutation at nucleotide 5545 of mtDNA, which was present at unusually low levels (<25%) in affected tissues. The pathogenic threshold for the mutation in cybrids was between 4 and 8%, implying a dominant mechanism of action. The mutation affects the central base of the anticodon triplet of tRNA(Trp) and it may alter the codon specificity of the affected tRNA. These findings introduce the concept of dominance in mitochondrial genetics and pose new diagnostic challenges, because such mutations may easily escape detection. Moreover, similar mutations arising stochastically and accumulating in a minority of mtDNA molecules during the aging process may severely impair RC function in cells.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação Puntual , RNA de Transferência de Triptofano/genética , Adolescente , Sequência de Bases , Fibroblastos/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Triptofano/química
8.
Signal Transduct Target Ther ; 5(1): 14, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32296036

RESUMO

Sirtuin 3 (SIRT3) is a deacetylase that modulates proteins that control metabolism and protects against oxidative stress. Modulation of SIRT3 activity has been proposed as a promising therapeutic target for ameliorating metabolic diseases and associated cardiac disturbances. In this study, we investigated the role of SIRT3 in inflammation and fibrosis in the heart using male mice with constitutive and systemic deletion of SIRT3 and human cardiac AC16 cells. SIRT3 knockout mice showed cardiac fibrosis and inflammation that was characterized by augmented transcriptional activity of AP-1. Consistent with this, SIRT3 overexpression in human and neonatal rat cardiomyocytes partially prevented the inflammatory and profibrotic response induced by TNF-α. Notably, these effects were associated with a decrease in the mRNA and protein levels of FOS and the DNA-binding activity of AP-1. Finally, we demonstrated that SIRT3 inhibits FOS transcription through specific histone H3 lysine K27 deacetylation at its promoter. These findings highlight an important function of SIRT3 in mediating the often intricate profibrotic and proinflammatory responses of cardiac cells through the modulation of the FOS/AP-1 pathway. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy, heart failure, and diabetic cardiomyopathy, our results point to SIRT3 as a potential target for treating these diseases.


Assuntos
Fibrose/genética , Insuficiência Cardíaca/genética , Proteínas Proto-Oncogênicas c-fos/genética , Sirtuína 3/genética , Fator de Transcrição AP-1/genética , Animais , Fibrose/patologia , Coração , Insuficiência Cardíaca/patologia , Histonas/genética , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/genética , Processamento de Proteína Pós-Traducional/genética , Ratos
9.
J Mol Cell Cardiol ; 46(6): 936-42, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19233192

RESUMO

Mitochondrial DNA (mtDNA) inheritance and maintenance and function of the respiratory chain are the result of a synergistic action of the nuclear and the mitochondrial genomes. Mutations in either or both genomes can result in a wide range of multisystemic disorders. We have studied a homoplasmic mtDNA mutation in the tRNA(Ile) gene that segregates exclusively with cardiomyopathy in two unrelated families. Cytochrome c oxidase (COX) deficiency was selectively observed only in the heart tissue and in patient's cardiomyocyte cultures and not in any other cell type, indicating that the defect is tissue specific. To understand the pathogenic mechanism of cardiomyopathy associated with a homoplasmic, tissue specific mtDNA mutation, we constructed transnuclear cardiomyocyte cell lines with normal or patient's nucleus and containing wild type or mutant mtDNA. Of the four cell lines analyzed, COX activity was low only in patient's cardiomyocytes illustrating that both the patient's nucleus and mitochondria are essential for expression of the phenotype. In cells with either wild type nucleus or wild type mtDNA, COX activity was normal. From these results it is evident that a tissue specific nuclear modifier gene may interact synergistically with the mtDNA mutation to cause COX deficiency.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Cardiomiopatias/genética , Linhagem Celular , Células Cultivadas , Deficiência de Citocromo-c Oxidase/genética , Análise Mutacional de DNA , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Genótipo , Humanos , Mitocôndrias Cardíacas/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição/genética
10.
Am J Physiol Heart Circ Physiol ; 297(2): H550-5, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542490

RESUMO

B-type natriuretic peptide (BNP) is a peptide hormone of myocardial origin with significant cardioprotective properties. Patients with myocardial ischemia present with high levels of BNP in plasma and elevated expression in the myocardium. However, the molecular mechanisms of BNP induction in the ischemic myocardium are not well understood. The aim of the investigation was to assess whether myocardial hypoxia induces the production of BNP in human ventricular myocytes. To test the hypothesis that reduced oxygen tension can directly stimulate BNP gene expression and release in the absence of hemodynamic or neurohormonal stimuli, we used an in vitro model system of cultured human ventricular myocytes (AC16 cells). Cells were cultured under normoxic (21% O(2)) or hypoxic (5% O(2)) conditions for up to 48 h. The accumulation of BNP, atrial natriuretic peptide (ANP), and vascular endothelial growth factor (VEGF) was then measured. Hypoxia stimulated the protein release of BNP and VEGF but not ANP. In concordance, the increased mRNA levels of BNP and VEGF but not ANP were found on culturing AC16 cells under hypoxic conditions. The analysis of the transcriptional activity of the hypoxia-inducible factor 1 (HIF-1) in nuclear extracts showed that HIF-1 activity was induced under hypoxic conditions. Finally, the treatment of AC16 cells with the HIF-1 inhibitor rotenone in hypoxia inhibited BNP and VEGF release. In conclusion, these data indicate that hypoxia induces the synthesis and secretion of BNP in human ventricular myocytes, likely through HIF-1-enhanced transcriptional activity.


Assuntos
Hipóxia/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/citologia , Oxigênio/farmacologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
J Mol Med (Berl) ; 86(9): 1013-24, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18665344

RESUMO

Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (alpha-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFbeta2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF.


Assuntos
Pressão Sanguínea , Cardiomegalia , Insuficiência Cardíaca , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/patologia , Hemodinâmica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Distribuição Aleatória , Caracteres Sexuais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição , Função Ventricular Esquerda
12.
J Toxicol Environ Health A ; 72(5): 301-4, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19184745

RESUMO

One of the long-term objectives of the research in our laboratory was to determine whether mitochondrial DNA (mtDNA) mutations were generated in cell lines exposed to a variety of known mutagens. Many of these mutagens are known to increase oxidative stress in the cell, and one potential outcome of this would be an increased incidence of point mutations in mtDNA. Recently, there has been some controversy regarding the validity of point mutations in the regulatory region of mtDNA as a predictive or causative marker for carcinogenesis. Studies were undertaken to assess whether nuclear mutagens such as arsenic (As), asbestos, and ultraviolet (UV) and gamma-radiation, induced both heteroplasmic and homoplasmic point mutations in mtDNA. A direct sequencing approach was used to reduce the occurrence of experimental errors and cross-checked all base changes with databases of known polymorphisms. Our results showed that, while base changes did occur, there was no marked difference between the number of changes in treated and untreated cells. Furthermore, in human lymphocyte samples from subjects exposed to As, most of these base changes were previously reported. Interestingly, there was an increase in the number of transversions (purine ( pyrimidine) in smokers from a human population study, but as with the findings in cell culture samples, there was no difference in the total number of base changes. Data suggest that only a change in the number of rare transversions would be indicative of an increase in point mutations in mtDNA after exposure to mutagens.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/efeitos da radiação , Poluentes Ambientais/toxicidade , Raios gama , Regulação da Expressão Gênica/efeitos dos fármacos , Mutagênicos/toxicidade , Raios Ultravioleta , Animais , Arsênio/toxicidade , Amianto/toxicidade , Células CHO , Carcinógenos/toxicidade , Linhagem Celular , Cricetinae , Cricetulus , Dano ao DNA , Exposição Ambiental/efeitos adversos , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Mutação/genética , Espécies Reativas de Oxigênio , Fumar/genética
13.
Cancer Res ; 67(11): 5239-47, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17545603

RESUMO

Arsenic is a well-established human carcinogen that is chronically consumed in drinking water by millions of people worldwide. Recent evidence has suggested that arsenic is a genotoxic carcinogen. Furthermore, we have shown that mitochondria mediate the mutagenic effects of arsenic in mammalian cells, as arsenic did not induce nuclear mutations in mitochondrial DNA (mtDNA)-depleted cells. Using the human-hamster hybrid A(L) cells, we show here that arsenic alters mitochondrial function by decreasing cytochrome c oxidase function and oxygen consumption but increasing citrate synthase function. These alterations correlated with depletion in mtDNA copy number and increase in large heteroplasmic mtDNA deletions. In addition, mtDNA isolated periodically from cultures treated continuously with arsenic did not consistently display the same deletion pattern, indicating that the mitochondrial genome was subjected to repeated and continuous damage. These data support the theory that the mitochondria, and particularly mtDNA, are important targets of the mutagenic effects of arsenic in mammalian cells.


Assuntos
Arsênio/toxicidade , Dano ao DNA , DNA Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Cricetinae , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Células Híbridas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Testes de Mutagenicidade , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos
14.
Eur J Hum Genet ; 16(10): 1265-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18398437

RESUMO

Mutations in mitochondrial tRNA (mt-tRNA) genes are well recognized as a common cause of human disease, exhibiting a significant degree of clinical heterogeneity. While these differences are explicable, in part, by differences in the innate pathogenicity of the mutation, its distribution and abundance, other factors, including nuclear genetic background, mitochondrial DNA (mtDNA) haplotype and additional mtDNA mutations may influence the expression of mt-tRNA mutations. We describe the clinical, biochemical and molecular findings in a family with progressive myopathy, deafness and diabetes and striking respiratory chain abnormalities due to a well-characterized heteroplasmic mt-tRNA mutation in the mt-tRNA(Ser(UCN)) (MTTS1) gene. In addition to the m.7472Cins mutation, all individuals were homoplasmic for another variant, m.7472A > C, affecting the adjacent nucleotide in the mt-tRNA(Ser(UCN)) structure. In addition to available patient tissues, we have analysed transmitochondrial cybrid clones harbouring homoplasmic levels of m.7472A > C and varying levels of the m.7472Cins mutation in an attempt to clarify the precise role of the m.7472A > C transversion in the underlying respiratory chain abnormality. Evidence from both in vivo and in vitro studies demonstrate that the m.7472A > C is able to modify the expression of the m.7472Cins mutation and would suggest that it is not a neutral variant but appears to cause a biochemical defect by itself, confirming that homoplasmic mtDNA variants can modulate the phenotypic expression of pathogenic, heteroplasmic mtDNA mutations.


Assuntos
DNA Mitocondrial/genética , Mutação/genética , RNA de Transferência/genética , Idoso , Sequência de Bases , Bioensaio , Northern Blotting , Células Clonais , Análise Mutacional de DNA , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/biossíntese , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Linhagem , Fenótipo , Biossíntese de Proteínas , Succinato Desidrogenase/metabolismo
15.
Mitochondrion ; 7(1-2): 106-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17307400

RESUMO

Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antimicina A/farmacologia , Linhagem Celular Tumoral , Dano ao DNA , Transporte de Elétrons/efeitos dos fármacos , Fluoresceínas , Corantes Fluorescentes , Humanos , Células Híbridas , Mitocôndrias/efeitos dos fármacos , Nitrocompostos/farmacologia , Propionatos/farmacologia , Rotenona/farmacologia , Cianeto de Sódio/farmacologia , Superóxido Dismutase/genética , Tenoiltrifluoracetona/farmacologia , Transfecção
16.
DNA Seq ; 18(5): 341-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17654009

RESUMO

Mammalian mitochondria contain their own approximately 16.5 kb circular genome. Mitochondrial DNA (mtDNA) encodes for a subset of the proteins involved in the electron transport chain and depletion or mutation of the sequence is implicated in a number of human disease processes. The recent finding is that mitochondrial damage mediates genotoxicity after exposure to chemical carcinogens has focused attention on the role of mtDNA mutations in the development of cancer. Although the entire genome has been sequenced for a number of mammals, only a small fraction of the mtDNA sequence is available for hamsters. We have obtained here the entire 16,284 bp sequence of the Chinese hamster mitochondrial genome, which will enable detailed analysis of mtDNA mutations caused by exposure to mutagens in hamster-derived cell lines.


Assuntos
DNA Mitocondrial/química , DNA Mitocondrial/genética , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Genoma , Dados de Sequência Molecular , Análise de Sequência de DNA
17.
Cancer Res ; 65(8): 3236-42, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15833855

RESUMO

Arsenic is an important environmental carcinogen that affects millions of people worldwide through contaminated water supplies. For decades, arsenic was considered a nongenotoxic carcinogen. Using the highly sensitive A(L) mutation assay, we previously showed that arsenic is, indeed, a potent gene and chromosomal mutagen and that its effects are mediated through the induction of reactive oxygen species. However, the origin of these radicals and the pathways involved are not known. Here we show that mitochondrial damage plays a crucial role in arsenic mutagenicity. Treatment of enucleated cells with arsenic followed by rescue fusion with karyoplasts from controls resulted in significant mutant induction. In contrast, treatment of mitochondrial DNA-depleted (rho(0)) cells produced few or no mutations. Mitochondrial damage can lead to the release of superoxide anions, which then react with nitric oxide to produce the highly reactive peroxynitrites. The mutagenic damage was dampened by the nitric oxide synthase inhibitor, N(G)-methyl-L-arginine. These data illustrate that mitochondria are a primary target in arsenic-induced genotoxic response and that a better understanding of the mutagenic/carcinogenic mechanism of arsenic should provide a basis for better interventional approach in both treatment and prevention of arsenic-induced cancer.


Assuntos
Arsenitos/toxicidade , Mitocôndrias/efeitos dos fármacos , Compostos de Sódio/toxicidade , Tirosina/análogos & derivados , Animais , Células CHO , Cricetinae , Dano ao DNA , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/genética , Humanos , Células Híbridas , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Testes de Mutagenicidade , Ácido Peroxinitroso/metabolismo , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tirosina/metabolismo
18.
Mutat Res ; 806: 88-97, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28283188

RESUMO

The effect of ionizing irradiation on cytoplasmic organelles is often underestimated because the general dogma considers direct DNA damage in the nuclei to be the primary cause of radiation induced toxicity. Using a precision microbeam irradiator, we examined the changes in mitochondrial dynamics and functions triggered by targeted cytoplasmic irradiation with α-particles. Mitochondrial dysfunction induced by targeted cytoplasmic irradiation led to activation of autophagy, which degraded dysfunctional mitochondria in order to maintain cellular energy homeostasis. The activation of autophagy was cytoplasmic irradiation-specific and was not detected in nuclear irradiated cells. This autophagic process was oxyradical-dependent and required the activity of the mitochondrial fission protein dynamin related protein 1 (DRP1). The resultant mitochondrial fission induced phosphorylation of AMP activated protein kinase (AMPK) which leads to further activation of the extracellular signal-related kinase (ERK) 1/2 with concomitant inhibition of the mammalian target of rapamycin (mTOR) to initiate autophagy. Inhibition of autophagy resulted in delayed DNA damage repair and decreased cell viability, which supports the cytoprotective function of autophagy. Our results reveal a novel mechanism in which dysfunctional mitochondria are degraded by autophagy in an attempt to protect cells from toxic effects of targeted cytoplasmic radiation.


Assuntos
Partículas alfa , Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Citoplasma/efeitos da radiação , Células Epiteliais/patologia , Sistema Respiratório/patologia , Células Cultivadas , Células Epiteliais/efeitos da radiação , Humanos , Dinâmica Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Sistema Respiratório/efeitos da radiação , Serina-Treonina Quinases TOR/metabolismo
20.
J Am Coll Cardiol ; 41(10): 1786-96, 2003 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12767666

RESUMO

OBJECTIVES: The purpose of this study was to understand the clinical and molecular features of familial hypertrophic cardiomyopathy (HCM) in which a mitochondrial abnormality was strongly suspected. BACKGROUND: Defects of the mitochondrial genome are responsible for a heterogeneous group of clinical disorders, including cardiomyopathy. The majority of pathogenic mutations are heteroplasmic, with mutated and wild-type mitochondrial deoxyribonucleic acid (mtDNA) coexisting within the same cell. Homoplasmic mutations (present in every copy of the genome within the cell) present a difficult challenge in terms of diagnosis and assigning pathogenicity, as human mtDNA is highly polymorphic. METHODS: A detailed clinical, histochemical, biochemical, and molecular genetic analysis was performed on two families with HCM to investigate the underlying mitochondrial defect. RESULTS: Cardiac tissue from an affected child in the presenting family exhibited severe deficiencies of mitochondrial respiratory chain enzymes, whereas histochemical and biochemical studies of the skeletal muscle were normal. Mitochondrial DNA sequencing revealed an A4300G transition in the mitochondrial transfer ribonucleic acid (tRNA)(Ile) gene, which was shown to be homoplasmic by polymerase chain reaction/restriction fragment length polymorphism analysis in all samples from affected individuals and other maternal relatives. In a second family, previously reported as heteroplasmic for this base substitution, the mutation has subsequently been shown to be homoplasmic. The pathogenic role for this mutation was confirmed by high-resolution Northern blot analysis of heart tissue from both families, revealing very low steady-state levels of the mature mitochondrial tRNA(Ile). CONCLUSIONS: This report documents, for the first time, that a homoplasmic mitochondrial tRNA mutation may cause maternally inherited HCM. It highlights the significant contribution that homoplasmic mitochondrial tRNA substitutions may play in the development of cardiac disease. A restriction of the biochemical defect to the affected tissue has important implications for the screening of patients with cardiomyopathy for mitochondrial disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Mitocôndrias Cardíacas/genética , Mutação Puntual , RNA de Transferência de Isoleucina/genética , RNA/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , DNA Mitocondrial/genética , Transporte de Elétrons , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/genética , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Mitocondrial , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa