Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380184

RESUMO

Mass spectrometry-based sample multiplexing with isobaric tags permits the development of high-throughput and precise quantitative biological assays with proteome-wide coverage and minimal missing values. Here, we nearly doubled the multiplexing capability of the TMTpro reagent set to a 35-plex through the incorporation of one deuterium isotope into the reporter group. Substituting deuterium frequently results in suboptimal peak coelution, which can compromise the accuracy of reporter ion-based quantification. To counteract the deuterium effect on quantitation, we implemented a strategy that necessitated the segregation of nondeuterium and deuterium-containing channels into distinct subplexes during normalization procedures, with reassembly through a common bridge channel. This multiplexing strategy of "design independent sub-plexes but acquire together" (DISAT) was used to compare protein expression differences between human cell lines and in a cysteine-profiling (i.e., chemoproteomics) experiment to identify compounds binding to cysteine-113 of Pin1.

2.
J Proteome Res ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962907

RESUMO

Sample multiplexing-based proteomic strategies rely on fractionation to improve proteome coverage. Tandem mass tag (TMT) experiments, for example, can currently accommodate up to 18 samples with proteins spanning several orders of magnitude, thus necessitating fractionation to achieve reasonable proteome coverage. Here, we present a simple yet effective peptide fractionation strategy that partitions a pooled TMT sample with a two-step elution using a strong anion-exchange (SAX) spin column prior to gradient-based basic pH reversed-phase (BPRP) fractionation. We highlight our strategy with a TMTpro18-plex experiment using nine diverse human cell lines in biological duplicate. We collected three data sets, one using only BPRP fractionation and two others of each SAX-partition followed by BPRP. The three data sets quantified a similar number of proteins and peptides, and the data highlight noticeable differences in the distribution of peptide charge and isoelectric point between the SAX partitions. The combined SAX partition data set contributed 10% more proteins and 20% more unique peptides that were not quantified by BPRP fractionation alone. In addition to this improved fractionation strategy, we provide an online resource of relative abundance profiles for over 11,000 proteins across the nine human cell lines, as well as two additional experiments using ovarian and pancreatic cancer cell lines.

3.
Cell Chem Biol ; 31(3): 565-576.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38118439

RESUMO

Chemoproteomics has made significant progress in investigating small-molecule-protein interactions. However, the proteome-wide profiling of cysteine ligandability remains challenging to adapt for high-throughput applications, primarily due to a lack of platforms capable of achieving the desired depth using low input in 96- or 384-well plates. Here, we introduce a revamped, plate-based platform which enables routine interrogation of either ∼18,000 or ∼24,000 reactive cysteines based on starting amounts of 10 or 20 µg, respectively. This represents a 5-10X reduction in input and 2-3X improved coverage. We applied the platform to screen 192 electrophiles in the native HEK293T proteome, mapping the ligandability of 38,450 reactive cysteines from 8,274 human proteins. We further applied the platform to characterize new cellular targets of established drugs, uncovering that ARS-1620, a KRASG12C inhibitor, binds to and inhibits an off-target adenosine kinase ADK. The platform represents a major step forward to high-throughput proteome-wide evaluation of reactive cysteines.


Assuntos
Cisteína , Proteoma , Humanos , Proteoma/metabolismo , Cisteína/metabolismo , Ligantes , Células HEK293
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa