Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(10): 1863-1880, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35877975

RESUMO

Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.


Assuntos
Poluição por Fumaça de Tabaco , Neoplasias da Bexiga Urinária , Humanos , 2-Naftilamina/metabolismo , 2-Naftilamina/farmacologia , Acroleína/metabolismo , Aldeídos/metabolismo , Carcinógenos/química , Cresóis/metabolismo , Cresóis/farmacologia , DNA/metabolismo , Dano ao DNA , Células Epiteliais , Glutationa/metabolismo , Hidroquinonas/metabolismo , Peróxidos Lipídicos/metabolismo , Compostos Nitrosos/metabolismo , Estresse Oxidativo , Fumaça/efeitos adversos , Fumaça/análise , Nicotiana/química , Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
2.
Mol Cancer Res ; 22(5): 452-464, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345532

RESUMO

Resistance to androgen-deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform into emergent aggressive variant prostate cancer (AVPC), which has neuroendocrine (NE)-like features. In this work, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflect and retain key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. We compared 15 NE versus 33 AdCa samples, which included six different PDX tumors for each group in biological replicates, and identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of concordance from PDX tumor-matched protein and mRNA revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa. IMPLICATIONS: Overall, our study highlights the importance of protein-based identification when compared with RNA and provides a rich resource of new and feasible targets for clinical assay development and in understanding the underlying biology of these tumors.


Assuntos
Fosfoproteínas , Proteoma , Humanos , Masculino , Proteoma/metabolismo , Animais , Camundongos , Fosfoproteínas/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Xenoenxertos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteômica/métodos
3.
NPJ Genom Med ; 9(1): 7, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253539

RESUMO

Patients with prostate cancer (PC) generally do not respond favorably to immune checkpoint inhibitors, which may be due to a low abundance of tumor-infiltrating lymphocytes even when mutational load is high. Here, we identified a patient who presented with high-grade primary prostate cancer with two adjacent tumor nodules. While both nodules were mismatch repair-deficient (MMRd), exhibited pathogenic MSH2 and MSH6 alterations, had a high tumor mutational burden (TMB), and demonstrated high microsatellite instability (MSI), they had markedly distinct immune phenotypes. The first displayed a dense infiltrate of lymphocytes ("hot nodule"), while the second displayed significantly fewer infiltrating lymphocytes ("cold nodule"). Whole-exome DNA analysis found that both nodules shared many identical mutations, indicating that they were derived from a single clone. However, the cold nodule appeared to be sub-clonal relative to the hot nodule, suggesting divergent evolution of the cold nodule from the hot nodule. Whole-transcriptome RNA analysis found that the cold nodule demonstrated lower expression of genes related to antigen presentation (HLA) and, paradoxically, classical tumor immune tolerance markers such as PD-L1 (CD274) and CTLA-4. Immune cell deconvolution suggested that the hot nodule was enriched not only in CD8+ and CD4 + T lymphocytes, but also in M1 macrophages, activated NK cells, and γδ T cells compared to the cold nodule. This case highlights that MMRd/TMB-high PC can evolve to minimize an anti-tumor immune response, and nominates downregulation of antigen presentation machinery (HLA loss) as a potential mechanism of adaptive immune evasion in PC.

4.
Front Oncol ; 13: 1210487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456235

RESUMO

Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.

5.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163118

RESUMO

Prostate cancer (PCa) remains the most diagnosed non-skin cancer amongst the American male population. Treatment for localized prostate cancer consists of androgen deprivation therapies (ADTs), which typically inhibit androgen production and the androgen receptor (AR). Though initially effective, a subset of patients will develop resistance to ADTs and the tumors will transition to castration-resistant prostate cancer (CRPC). Second generation hormonal therapies such as abiraterone acetate and enzalutamide are typically given to men with CRPC. However, these treatments are not curative and typically prolong survival only by a few months. Several resistance mechanisms contribute to this lack of efficacy such as the emergence of AR mutations, AR amplification, lineage plasticity, AR splice variants (AR-Vs) and increased kinase signaling. Having identified SRC kinase as a key tyrosine kinase enriched in CRPC patient tumors from our previous work, we evaluated whether inhibition of SRC kinase synergizes with enzalutamide or chemotherapy in several prostate cancer cell lines expressing variable AR isoforms. We observed robust synergy between the SRC kinase inhibitor, saracatinib, and enzalutamide, in the AR-FL+/AR-V+ CRPC cell lines, LNCaP95 and 22Rv1. We also observed that saracatinib significantly decreases AR Y 534 phosphorylation, a key SRC kinase substrate residue, on AR-FL and AR-Vs, along with the AR regulome, supporting key mechanisms of synergy with enzalutamide. Lastly, we also found that the saracatinib-enzalutamide combination reduced DNA replication compared to the saracatinib-docetaxel combination, resulting in marked increased apoptosis. By elucidating this combination strategy, we provide pre-clinical data that suggests combining SRC kinase inhibitors with enzalutamide in select patients that express both AR-FL and AR-Vs.

6.
Front Endocrinol (Lausanne) ; 14: 1093332, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065756

RESUMO

Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.


Assuntos
Tumores Neuroendócrinos , Neoplasias da Próstata , Humanos , Masculino , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia
7.
bioRxiv ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37577653

RESUMO

Resistance to androgen deprivation therapies leads to metastatic castration-resistant prostate cancer (mCRPC) of adenocarcinoma (AdCa) origin that can transform to emergent aggressive variant prostate cancer (AVPC) which has neuroendocrine (NE)-like features. To this end, we used LuCaP patient-derived xenograft (PDX) tumors, clinically relevant models that reflects and retains key features of the tumor from advanced prostate cancer patients. Here we performed proteome and phosphoproteome characterization of 48 LuCaP PDX tumors and identified over 94,000 peptides and 9,700 phosphopeptides corresponding to 7,738 proteins. When we compared 15 NE versus 33 AdCa PDX samples, we identified 309 unique proteins and 476 unique phosphopeptides that were significantly altered and corresponded to proteins that are known to distinguish these two phenotypes. Assessment of protein and RNA concordance from these tumors revealed increased dissonance in transcriptionally regulated proteins in NE and metabolite interconversion enzymes in AdCa.

8.
Commun Biol ; 6(1): 417, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059746

RESUMO

Gene behavior is governed by activity of other genes in an ecosystem as well as context-specific cues including cell type, microenvironment, and prior exposure to therapy. Here, we developed the Algorithm for Linking Activity Networks (ALAN) to compare gene behavior purely based on patient -omic data. The types of gene behaviors identifiable by ALAN include co-regulators of a signaling pathway, protein-protein interactions, or any set of genes that function similarly. ALAN identified direct protein-protein interactions in prostate cancer (AR, HOXB13, and FOXA1). We found differential and complex ALAN networks associated with the proto-oncogene MYC as prostate tumors develop and become metastatic, between different cancer types, and within cancer subtypes. We discovered that resistant genes in prostate cancer shared an ALAN ecosystem and activated similar oncogenic signaling pathways. Altogether, ALAN represents an informatics approach for developing gene signatures, identifying gene targets, and interpreting mechanisms of progression or therapy resistance.


Assuntos
Ecossistema , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Genes myc , Genômica , Transdução de Sinais/genética , Microambiente Tumoral/genética
9.
Sci Transl Med ; 15(705): eade3341, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467318

RESUMO

Allogeneic natural killer (NK) cell adoptive transfer has shown the potential to induce remissions in relapsed or refractory leukemias and lymphomas, but strategies to enhance NK cell survival and function are needed to improve clinical efficacy. Here, we demonstrated that NK cells cultured ex vivo with interleukin-15 (IL-15) and nicotinamide (NAM) exhibited stable induction of l-selectin (CD62L), a lymphocyte adhesion molecule important for lymph node homing. High frequencies of CD62L were associated with elevated transcription factor forkhead box O1 (FOXO1), and NAM promoted the stability of FOXO1 by preventing proteasomal degradation. NK cells cultured with NAM exhibited metabolic changes associated with elevated glucose flux and protection against oxidative stress. NK cells incubated with NAM also displayed enhanced cytotoxicity and inflammatory cytokine production and preferentially persisted in xenogeneic adoptive transfer experiments. We also conducted a first-in-human phase 1 clinical trial testing adoptive transfer of NK cells expanded ex vivo with IL-15 and NAM (GDA-201) combined with monoclonal antibodies in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) (NCT03019666). Cellular therapy with GDA-201 and rituximab was well tolerated and yielded an overall response rate of 74% in 19 patients with advanced NHL. Thirteen patients had a complete response, and 1 patient had a partial response. GDA-201 cells were detected for up to 14 days in blood, bone marrow, and tumor tissues and maintained a favorable metabolic profile. The safety and efficacy of GDA-201 in this study support further development as a cancer therapy.


Assuntos
Interleucina-15 , Linfoma não Hodgkin , Humanos , Interleucina-15/metabolismo , Niacinamida/metabolismo , Linfoma não Hodgkin/terapia , Linfoma não Hodgkin/metabolismo , Rituximab/metabolismo , Células Matadoras Naturais
10.
Clin Cancer Res ; 29(14): 2702-2713, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37126020

RESUMO

PURPOSE: In patients with metastatic prostate cancer (mPC), ATM and BRCA2 mutations dictate differences in PARPi inhibitor response and other therapies. We interrogated the molecular features of ATM- and BRCA2-mutated mPC to explain the divergent clinical outcomes and inform future treatment decisions. EXPERIMENTAL DESIGN: We examined a novel set of 1,187 mPCs after excluding microsatellite-instable (MSI) tumors. We stratified these based on ATM (n = 88) or BRCA2 (n = 98) mutations. As control groups, mPCs with mutations in 12 other homologous recombination repair (HRR) genes were considered non-BRCA2/ATM HRR-deficient (HRDother, n = 193), whereas lack of any HRR mutations were considered HRR-proficient (HRP; n = 808). Gene expression analyses were performed using Limma. Real-world overall survival was determined from insurance claims data. RESULTS: In noncastrate mPCs, only BRCA2-mutated mPCs exhibited worse clinical outcomes to AR-targeted therapies. In castrate mPCs, both ATM and BRCA2 mutations exhibited worse clinical outcomes to AR-targeted therapies. ATM-mutated mPCs had reduced TP53 mutations and harbored coamplification of 11q13 genes, including CCND1 and genes in the FGF family. BRCA2-mutated tumors showed elevated genomic loss-of-heterozygosity scores and were often tumor mutational burden high. BRCA2-mutated mPCs had upregulation of cell-cycle genes and were enriched in cell-cycle signaling programs. This was distinct from ATM-mutated tumors. CONCLUSIONS: Tumoral ATM and BRCA2 mutations are associated with differential clinical outcomes when patients are stratified by treatments, including hormonal or taxane therapies. ATM- and BRCA2-mutated tumors exhibited differences in co-occurring molecular features. These unique molecular features may inform therapeutic decisions and development of novel therapies.


Assuntos
Genes BRCA2 , Neoplasias da Próstata , Masculino , Humanos , Mutação , Proteína BRCA2/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Biomarcadores Tumorais/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética
11.
NPJ Precis Oncol ; 6(1): 80, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323882

RESUMO

B7-H3 (CD276) is an immune checkpoint overexpressed in prostate cancer with minimal expression in normal tissues and associated with poor prognosis, making it an excellent therapy target. We interrogated B7-H3 expression and its regulation in metastatic castration-resistant prostate cancer (mCRPC). We found greater expression of B7-H3 transcript relative to other immunotherapy targets (CTLA-4, PD-L1/2), including in tumors that lacked expression of prostate-specific membrane antigen (PSMA). Enzalutamide-resistant mCRPC cells demonstrated increased amounts of B7-H3, and this was associated with resistance signaling pathways. Using a machine-learning algorithm, the gene network of B7-H3 was strongly correlated with androgen receptor (AR) and AR co-factor (HOXB13, FOXA1) networks. In mCRPC samples, the B7-H3 promoter and distal enhancer regions exhibited enhanced transcriptional activity and were directly bound by AR and its co-factors. Altogether, our study characterizes molecular profiles and epigenetic regulation of B7-H3-expressing mCRPC tumors, which informs optimal precision-oncology approaches for mCRPC patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa