Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Geophys Res Planets ; 127(6): e2021JE007096, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865672

RESUMO

Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features. This study uses orbiter and rover data to characterize ridge morphology, spatial distribution, compositional and material properties, and association with other aeolian features in the area. Based on these observations, we find that the Glen Torridon ridges are consistent with an origin as wind-eroded bedrock ridges, carved during the exhumation of Mount Sharp. Erosional features like the Glen Torridon ridges observed elsewhere on Mars, termed periodic bedrock ridges (PBRs), have been interpreted to form transverse to the dominant wind direction. The size and morphology of the Glen Torridon PBRs are consistent with transverse formative winds, but the orientation of nearby aeolian bedforms and bedrock erosional features raise the possibility of PBR formation by a net northeasterly wind regime. Although several formation models for the Glen Torridon PBRs are still under consideration, and questions persist about the nature of PBR-forming paleowinds, the presence of PBRs at this site provides important constraints on the depositional and erosional history of Gale crater.

2.
Phys Rev E ; 96(4-1): 043110, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347578

RESUMO

Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa