Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(12): 3928-3933, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681761

RESUMO

An iterative polyphosphorylation approach is described, which is based on a phosphoramidite (P-amidite) derived reagent (c-PyPA) obtained from the cyclization of pyrophosphate with a reactive diisopropylaminodichlorophosphine. This type of reagent is unprecedented as it represents a reactive P-amidite without protecting groups. The reagent proved to be stable in solution over several weeks. Its utility is described in the context of iterative monodirectional and bidirectional polyphosphorylations. The ensuing functionalized cyclotriphosphate can be opened with a variety of nucleophiles providing ready access to diverse functionalized polyphosphate chains of defined length with several tags, including both P-N and P-O labels. Their interaction with exo- and endopolyphosphatases is described.

2.
Nucleus ; 9(1): 65-86, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910574

RESUMO

Boundary Element-Associated Factor 32 (BEAF 32) is a sequence specific DNA binding protein involved in functioning of chromatin domain boundaries in Drosophila. Several studies also show it to be involved in transcriptional regulation of a large number of genes, many of which are annotated to have cell cycle, development and differentiation related function. Since post-translational modifications (PTMs) of proteins add to their functional capacity, we investigated the PTMs on BEAF 32. The protein is known to be phosphorylated and O-GlcNAcylated. We mapped O-GlcNAc site at T91 of BEAF 32 and showed that it is linked to the deposition of active histone (H3K4me3) marks at transcription start site (TSS) of associated genes. Its role as a boundary associated factor, however, does not depend on this modification. Our study shows that by virtue of O-GlcNAcylation, BEAF 32 is linked to epigenetic mechanisms that activate a subset of associated genes.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa