Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202401247, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896778

RESUMO

As part of our continuous research for the discovery of bioactive compounds against Trypanosoma cruzi and Leishmania infantum, the alkaloid (6aS)-dicentrine (1) was oxidized to afford (6aS,6S)- (2) and (6aS,6R)- (3) dicentrine-N-oxides. Evaluation of the cytotoxicity against NCTC cells indicated that 2 and 3 are non-toxic (CC50 > 200 µM) whereas 1 demonstrated CC50 of 52.0 µM. Concerning T. cruzi activity against amastigotes, derivatives 2 and 3 exhibited EC50 values of 9.9 µM (SI > 20.7) and 27.5 µM (SI > 7.3), respectively, but 1 is inactive (EC50 > 100 µM). Otherwise, when tested against L. infantum amastigotes, 1 and 3 exhibited EC50 values of 10.3 µM (SI = 5.0) and 12.7 µM (SI > 15.7), respectively, being 2 inactive (EC50 > 100 µM). Comparing the effects of positive controls benznidazol (EC50 = 6.5 µM and SI > 30.7) and miltefosine (EC50 = 10.2 µM and SI = 15.0), it was observed a selective antiparasitic activity to diastereomers 2 and 3 against T. cruzi and  L. infantum. Considering stereochemical aspects, it was suggested that the configuration of the new stereocenter formed after oxidation of 1 played an important role in the bioactivity against amastigotes of both tested parasites.

2.
J Nat Prod ; 85(5): 1340-1350, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35427139

RESUMO

Investigation of the marine sponge Agelas dispar MeOH fractions using feature-based molecular networking, dereplication, and isolation led to the discovery of new bromopyrrole-derived metabolites. An in-house library of bromopyrrole alkaloids previously isolated from A. dispar and Dictyonella sp. was utilized, along with the investigation of an MS/MS fragmentation of these compounds. Our strategy led to the isolation and identification of the disparamides A-C (1-3), with a novel carbon skeleton. Additionally, new dispyrins B-F (4-8) and nagelamides H2 and H3 (9 and 10) and known nagelamide H (11), citrinamine B (12), ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) were also isolated and identified by analysis of spectroscopic data. Analysis of MS/MS fragmentation data and molecular networking analysis indicated the presence of hymenidin (16), oroidin (17), dispacamide (18), monobromodispacamide (19), keramadine (20), longamide B (21), methyl ester of longamide B (22), hanishin (23), methyl ester of 3-debromolongamide B (24), and 3-debromohanishin (25). Antibacterial activity of ageliferin (13), bromoageliferin (14), and dibromoageliferin (15) was evaluated against susceptible and multi-drug-resistant ESKAPE pathogenic bacteria Klabsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterococcus faecalis. Dibromoageliferin (15) displayed the most potent antimicrobial activity against all tested susceptible and MDR strains. Compounds 13-15 presented no significant hemolytic activity up to 100 µM.


Assuntos
Agelas , Alcaloides , Poríferos , Agelas/química , Alcaloides/química , Animais , Antibacterianos/farmacologia , Escherichia coli , Ésteres , Estrutura Molecular , Poríferos/química , Pirróis/química , Espectrometria de Massas em Tandem
3.
JACS Au ; 4(2): 847-854, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425909

RESUMO

Visceral leishmaniasis and Chagas disease are neglected tropical diseases (NTDs) that severely impact the developing world. With current therapies suffering from poor efficacy and safety profiles as well as emerging resistance, new drug leads are direly needed. In this work, 26 alkaloids (9 natural and 17 synthetic) belonging to the benzyltetrahydroisoquinoline (BI) family were evaluated against both the pro/trypomastigote and amastigote forms of the parasites Leishmania infantum and Trypanosoma cruzi, the causative agents of these diseases. These alkaloids were synthesized via an efficient and modular enantioselective approach based on Bischler-Napieralski cyclization/Noyori asymmetric transfer hydrogenation to build the tetrahydroisoquinoline core. The bis-benzyltetrahydroisoquinoline (BBI) alkaloids were prepared using an Ullmann coupling of two BI units to form the biaryl ether linkage, which enabled a comprehensive survey of the influence of BI stereochemistry on bioactivity. Preliminary studies into the mechanism of action against Leishmania mexicana demonstrate that these compounds interfere with the cell cycle, potentially through inhibition of kinetoplast division, which may offer opportunities to identify a new target/mechanism of action. Three of the synthesized alkaloids showed promising druglike potential, meeting the Drugs for Neglected Disease initiative (DNDi) criteria for a hit against Chagas disease.

4.
ACS Omega ; 8(46): 44265-44275, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027351

RESUMO

Melanin is a substance that plays important roles in several organisms. Its function as an antioxidant and metal-complexing agent makes tyrosinase, the key enzyme that controls melanogenesis, an interesting target for designing inhibitors. In this article, we report a set of piperazine/piperidine amides of benzoic and cinnamic acid derivatives as tyrosinase inhibitors with improved potency and drug-likeness. The most potent compound 5b showed a pIC50 of 4.99 in the monophenolase assay, and only compound 3a showed reasonable potency in the diphenolase assay (pIC50, 4.18). These activities are not correlated to antiradical activity, suggesting that the activity is dependent on competition with the substrates. Molecular docking studies indicated that the benzyl substituent of 5b and other analogues perform important interactions in the enzyme that may explain the higher potency of these compounds. Moreover, the compounds present adequate lipophilicity and skin permeability and no relevant cytotoxicity (CC50 > 200 µM) to mammalian cells.

5.
Biochimie ; 208: 141-150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36586562

RESUMO

Natural metabolites present an extraordinary chemo-diversity and have been used as the inspiration for new drugs. Considering the need for new treatments against the neglected parasitic disease leishmaniasis, three semi-synthetic derivatives of natural neolignane licarin A were prepared: O-acetyl (1a), O-allyl (1b), and 5-allyl (1c). Using an ex vivo assay, compounds 1a, 1b, and 1c showed activity against the intracellular amastigotes of Leishmania (L.) infantum, with IC50 values of 9, 13, and 10 µM, respectively. Despite no induction of hemolytic activity, only compound 1b resulted in mammalian cytotoxicity (CC50 = 64 µM). The most potent compounds (1a and 1c) resulted in selectivity indexes >18. The mechanism of action of compound 1c was evaluated by fluorescent/luminescent based techniques and MALDI-TOF/MS. After a short incubation period, increased levels of the cytosolic calcium were observed in the parasites, with alkalinization of the acidocalcisomes. Compound 1c also induced mitochondrial hyperpolarization, resulting in decreased levels of ATP without altering the reactive oxygen species (ROS). Neither plasma membrane damages nor DNA fragmentation were observed after the treatment, but a reduction in the cellular proliferation was detected. Using MALDI-TOF/MS, mass spectral alterations of promastigote proteins were observed when compared to untreated and miltefosine-treated groups. This chemically modified neolignan induced lethal alterations of the bioenergetic and protein metabolism of Leishmania. Future PKPD and animal efficacy studies are needed to optimize this promising natural-derived compound.


Assuntos
Antiprotozoários , Leishmania infantum , Animais , Camundongos , Antiprotozoários/farmacologia , Cálcio/metabolismo , Leishmania infantum/metabolismo , Metabolismo Energético , Camundongos Endogâmicos BALB C , Mamíferos/metabolismo
6.
Eur J Pharm Sci ; 171: 106114, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986415

RESUMO

Trypanosoma cruzi is the causing agent of Chagas disease, a parasitic infection without efficient treatment for chronic patients. Despite the efforts, no new drugs have been approved for this disease in the last 60 years. Molecular modifications based on a natural product led to the development of a series of compounds (LINS03 series) with promising antitrypanosomal activity, however previous chemometric analysis revealed a significant impact of excessive lipophilicity and low aqueous solubility on potency of amine and amide derivatives. Therefore, this work reports different modifications in the core structure to achieve adequate balance of the physicochemical properties along with biological activity. A set of 34 analogues were designed considering predicted properties related to lipophilicity/hydrosolubility and synthesized to assess their activity and selective toxicity towards the parasite. Results showed that this strategy contributed to improve the drug-likeness of the series while considerable impacts on potency were observed. The rational analysis of the obtained data led to the identification of seven active piperazine amides (28-34, IC50 8.7 to 35.3 µM against intracellular amastigotes), devoid of significant cytotoxicity to mammalian cells. The addition of water-solubilizing groups and privileged substructures such as piperazines improved the physicochemical properties and overall drug-likeness of these compounds, increased potency and maintained selectivity towards the parasite. The obtained results brought important structure-activity relationship (SAR) data and new lead structures for further modifications were identified to achieve improved antitrypanosoma compounds.


Assuntos
Preparações Farmacêuticas , Tripanossomicidas , Trypanosoma cruzi , Animais , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia
7.
Front Microbiol ; 8: 1453, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824583

RESUMO

Inositol phosphorylceramide (IPC), the major sphingolipid in the genus Leishmania but not found in mammals, is considered a potentially useful target for chemotherapy against leishmaniasis. Leishmania (Viannia) braziliensis is endemic in Latin America and causes American tegumentary leishmaniasis. We demonstrated that IPCs are localized internally in parasites, using a specific monoclonal antibody. Treatment with 5 µM myriocin (a serine palmitoyltransferase inhibitor) rendered promastigotes 8-fold less infective than controls in experimental hamster infection, as determined by number of parasites per inguinal lymph node after 8 weeks infection, suggesting the importance of parasite IPC or sphingolipid derivatives in parasite infectivity or survival in the host. IPC was isolated from promastigotes of three L. (V.) braziliensis strains and analyzed by positive- and negative-ion ESI-MS. The major IPC ions were characterized as eicosasphinganine and eicosasphingosine. Negative-ion ESI-MS revealed IPC ion species at m/z 778.6 (d20:1/14:0), 780.6 (d20:0/14:0), 796.6 (t20:0/14:0), 806.6 (d20:1/16:0), and 808.6 (d20:0/16:0). IPCs isolated from L. (V.) braziliensis and L. (L.) major showed significant differences in IPC ceramide composition. The major IPC ion from L. (L.) major, detected in negative-ion ESI-MS at m/z 780.6, was composed of ceramide d16:1/18:0. Our results suggest that sphingosine synthase (also known as serine palmitoyltransferase; SPT) in L. (V.) braziliensis is responsible for synthesis of a long-chain base of 20 carbons (d20), whereas SPT in L. (L.) major synthesizes a 16-carbon long-chain base (d16). A phylogenetic tree based on SPT proteins was constructed by analysis of sequence homologies in species of the Leishmania and Viannia subgenera. Results indicate that SPT gene position in L. (V.) braziliensis is completely separated from that of members of subgenus Leishmania, including L. (L.) major, L. (L.) infantum, and L. (L.) mexicana. Our findings clearly demonstrate sphingoid base differences between L. (V.) braziliensis and members of subgenus Leishmania, and are relevant to future development of more effective targeted anti-leishmaniasis drugs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa