RESUMO
PURPOSE: The aim of this study was to compare setup accuracy of NovalisBody stereoscopic X-ray positioning using implanted markers in the prostate vs. bony structures in patients treated with dynamic conformal arc radiotherapy for prostate cancer. METHODS AND MATERIALS: Random and systematic setup errors (RE and SE) of the isocenter with regard to the center of gravity of three fiducial markers were measured by means of orthogonal verification films in 120 treatment sessions in 12 patients. Positioning was performed using NovalisBody semiautomated marker fusion. The results were compared with a control group of 261 measurements in 15 patients who were positioned with NovalisBody automated bone fusion. In addition, interfraction and intrafraction prostate motion was registered in the patients with implanted markers. RESULTS: Marker-based X-ray positioning resulted in a reduction of RE as well as SE in the anteroposterior, craniocaudal, and left-right directions compared with those in the control group. The interfraction prostate displacements with regard to the bony pelvis that could be avoided by marker positioning ranged between 1.6 and 2.8 mm for RE and between 1.3 and 4.3 mm for SE. Intrafraction random and systematic prostate movements ranged between 1.4 and 2.4 mm and between 0.8 and 1.3 mm, respectively. CONCLUSION: The problem of interfraction prostate motion can be solved by using implanted markers. In addition, the NovalisBody X-ray system performs more accurately with markers compared with bone fusion. Intrafraction organ motion has become the limiting factor for margin reduction around the clinical target volume.
Assuntos
Próstata , Neoplasias da Próstata/radioterapia , Próteses e Implantes , Radioterapia Conformacional/métodos , Estudos de Casos e Controles , Humanos , Masculino , Movimento , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , RadiografiaRESUMO
The dose distribution resulting from partially overlapping intensity modulated beams (IMBs) assigned to different isocenters for the treatment of the same planning target volume (PTV) was evaluated. These partially overlapping IMBs are used in static intensity modulated radiation therapy (IMRT) treatments with the Novalis system using the mini-MultiLeaf Collimator (mini-MLC) in Dynamic MultiLeaf Collimation (DMLC) mode. The resultant dose distribution was verified dosimetrically for a cylindrical target defined in a homogeneous cubic phantom. The phantom positioning can introduce dose nonuniformities in the resultant dose distribution by nonperfect positioning of the isocenters in accordance with each other. The dose inhomogeneities are quantified mathematically by summation of the dose profiles of the used IMBs and experimentally by measurement of the resulting dose profiles with radiographic film and thermoluminescent detectors (TLD). The mathematical estimation of the resulting dose profile of the treatment with a perfect positioning of the isocenters showed a good agreement with the planned dose profile. The magnitude of the maximum dose inhomogeneities introduced by the simulated supplementary shifts between the isocenters decreases by -8.54% mm(-1) as the shift changes from -0.30 +/- 0.10 cm to +0.30 +/- 0.10 cm. The TLD measurements showed a similar variation of the magnitude of the maximum dose inhomogeneities: -8.77% mm(-1). The amount of dose variation was underestimated with the radiographic film measurements, which showed a variation of -7.17% mm(-1). The film measurements demonstrated that the magnitude of the introduced maximum dose inhomogeneities did not alter significantly throughout the PTV. The approach of using partially overlapping IMBs assigned to different isocenters to enlarge the treatment region introduces smaller dose inhomogeneities in the resultant dose distribution than when abutting treatment fields are used. The resultant dose distribution of this treatment technique is less sensitive to positioning errors of the used treatment isocenters.