Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Chem Res Toxicol ; 37(2): 323-339, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38200616

RESUMO

Despite being extremely relevant for the protection of prenatal and neonatal health, the developmental toxicity (Dev Tox) is a highly complex endpoint whose molecular rationale is still largely unknown. The lack of availability of high-quality data as well as robust nontesting methods makes its understanding even more difficult. Thus, the application of new explainable alternative methods is of utmost importance, with Dev Tox being one of the most animal-intensive research themes of regulatory toxicology. Descending from TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), the present work describes TISBE (TIRESIA Improved on Structure-Based Explainability), a new public web platform implementing four fundamental advancements for in silico analyses: a three times larger dataset, a transparent XAI (explainable artificial intelligence) framework employing a fragment-based fingerprint coding, a novel consensus classifier based on five independent machine learning models, and a new applicability domain (AD) method based on a double top-down approach for better estimating the prediction reliability. The training set (TS) includes as many as 1008 chemicals annotated with experimental toxicity values. Based on a 5-fold cross-validation, a median value of 0.410 for the Matthews correlation coefficient was calculated; TISBE was very effective, with a median value of sensitivity and specificity equal to 0.984 and 0.274, respectively. TISBE was applied on two external pools made of 1484 bioactive compounds and 85 pediatric drugs taken from ChEMBL (Chemical European Molecular Biology Laboratory) and TEDDY (Task-Force in Europe for Drug Development in the Young) repositories, respectively. Notably, TISBE gives users the option to clearly spot the molecular fragments responsible for the toxicity or the safety of a given chemical query and is available for free at https://prometheus.farmacia.uniba.it/tisbe.


Assuntos
Inteligência Artificial , Animais , Recém-Nascido , Criança , Humanos , Reprodutibilidade dos Testes , Consenso
2.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893525

RESUMO

Oral anticoagulant therapy (OAT) for managing atrial fibrillation (AF) encompasses vitamin K antagonists (VKAs, such as warfarin), which was the mainstay of anticoagulation therapy before 2010, and direct-acting oral anticoagulants (DOACs, namely dabigatran etexilate, rivaroxaban, apixaban, edoxaban), approved for the prevention of AF stroke over the last thirteen years. Due to the lower risk of major bleeding associated with DOACs, anticoagulant switching is a common practice in AF patients. Nevertheless, there are issues related to OAT switching that still need to be fully understood, especially for patients in whom AF and heart failure (HF) coexist. Herein, the effective impact of the therapeutic switching from warfarin to DOACs in HF patients with AF, in terms of cardiac remodeling, clinical status, endothelial function and inflammatory biomarkers, was assessed by a machine learning (ML) analysis of a clinical database, which ultimately shed light on the real positive and pleiotropic effects mediated by DOACs in addition to their anticoagulant activity.


Assuntos
Anticoagulantes , Fibrilação Atrial , Insuficiência Cardíaca , Aprendizado de Máquina , Humanos , Fibrilação Atrial/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Administração Oral , Masculino , Feminino , Idoso , Doença Crônica , Varfarina/uso terapêutico
3.
Pharmacol Res ; 188: 106659, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646190

RESUMO

Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.


Assuntos
Síndrome Cardiorrenal , Diabetes Mellitus , Animais , Ratos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico , Síndrome Cardiorrenal/metabolismo , Diabetes Mellitus/tratamento farmacológico , Rim/metabolismo , Ratos Endogâmicos Dahl
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614292

RESUMO

The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure-activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity.


Assuntos
Mexiletina , Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Miotonia/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Síndrome , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
5.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902405

RESUMO

Ultrasonography is a safe, non-invasive imaging technique used in several fields of medicine, offering the possibility to longitudinally monitor disease progression and treatment efficacy over time. This is particularly useful when a close follow-up is required, or in patients with pacemakers (not suitable for magnetic resonance imaging). By virtue of these advantages, ultrasonography is commonly used to detect multiple skeletal muscle structural and functional parameters in sports medicine, as well as in neuromuscular disorders, e.g., myotonic dystrophy and Duchenne muscular dystrophy (DMD). The recent development of high-resolution ultrasound devices allowed the use of this technique in preclinical settings, particularly for echocardiographic assessments that make use of specific guidelines, currently lacking for skeletal muscle measurements. In this review, we describe the state of the art for ultrasound skeletal muscle applications in preclinical studies conducted in small rodents, aiming to provide the scientific community with necessary information to support an independent validation of these procedures for the achievement of standard protocols and reference values useful in translational research on neuromuscular disorders.


Assuntos
Distrofia Muscular de Duchenne , Doenças Neuromusculares , Humanos , Músculo Esquelético , Ultrassonografia , Ecocardiografia
6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897654

RESUMO

Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype-phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.


Assuntos
Epilepsia , Canal de Potássio Kv1.1 , Acetazolamida , Ataxia/tratamento farmacológico , Ataxia/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Mutação , Potássio
7.
Pharmacol Res ; 171: 105798, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34352400

RESUMO

Skeletal muscle atrophy occurs in response to various pathophysiological stimuli, including disuse, aging, and neuromuscular disorders, mainly due to an imbalance of anabolic/catabolic signaling. Branched Chain Amino Acids (BCAAs: leucine, isoleucine, valine) supplements can be beneficial for counteracting muscle atrophy, in virtue of their reported anabolic properties. Here, we carried out a proof-of-concept study to assess the in vivo/ex vivo effects of a 4-week treatment with BCAAs on disuse-induced atrophy, in a murine model of hind limb unloading (HU). BCAAs were formulated in drinking water, alone, or plus two equivalents of L-Alanine (2 ALA) or the dipeptide L-Alanyl-L-Alanine (Di-ALA), to boost BCAAs bioavailability. HU mice were characterized by reduction of body mass, decrease of soleus - SOL - muscle mass and total protein, alteration of postural muscles architecture and fiber size, dysregulation of atrophy-related genes (Atrogin-1, MuRF-1, mTOR, Mstn). In parallel, we provided new robust readouts in the HU murine model, such as impaired in vivo isometric torque and ex vivo SOL muscle contractility and elasticity, as well as altered immune response. An acute pharmacokinetic study confirmed that L-ALA, also as dipeptide, enhanced plasma exposure of BCAAs. Globally, the most sensitive parameters to BCAAs action were muscle atrophy and myofiber cross-sectional area, muscle force and compliance to stress, protein synthesis via mTOR and innate immunity, with the new BCAAs + Di-ALA formulation being the most effective treatment. Our results support the working hypothesis and highlight the importance of developing innovative formulations to optimize BCAAs biodistribution.


Assuntos
Alanina/uso terapêutico , Aminoácidos de Cadeia Ramificada/uso terapêutico , Dipeptídeos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Alanina/farmacocinética , Aminoácidos de Cadeia Ramificada/farmacocinética , Animais , Dipeptídeos/farmacocinética , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
8.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576077

RESUMO

Kv1.2 channels, encoded by the KCNA2 gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in KCNA2 have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia. Patients are treated with a combination of antiepileptic drugs and 4-aminopyridine (4-AP) has been recently trialed in specific cases. We identified a novel variant in KCNA2, E236K, in a Serbian proband with non-progressive congenital ataxia and early onset epilepsy, treated with sodium valproate. To ascertain the pathogenicity of E236K mutation and to verify its sensitivity to 4-AP, we transfected HEK 293 cells with Kv1.2 WT or E236K cDNAs and recorded potassium currents through the whole-cell patch-clamp. In silico analysis supported the electrophysiological data. E236K channels showed voltage-dependent activation shifted towards negative potentials and slower kinetics of deactivation and activation compared with Kv1.2 WT. Heteromeric Kv1.2 WT+E236K channels, resembling the condition of the heterozygous patient, confirmed a mixed gain- and loss-of-function (GoF/LoF) biophysical phenotype. 4-AP inhibited both Kv1.2 and E236K channels with similar potency. Homology modeling studies of mutant channels suggested a reduced interaction between the residue K236 in the S2 segment and the gating charges at S4. Overall, the biophysical phenotype of E236K channels correlates with the mild end of the clinical spectrum reported in patients with GoF/LoF defects. The response to 4-AP corroborates existing evidence that KCNA2-disorders could benefit from variant-tailored therapeutic approaches, based on functional studies.


Assuntos
4-Aminopiridina/uso terapêutico , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.2/genética , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Humanos , Lactente , Canal de Potássio Kv1.2/química , Imageamento por Ressonância Magnética , Masculino , Simulação de Dinâmica Molecular , Adulto Jovem
9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204499

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20-30% of BrS cases and is considered clinically relevant. METHODS: Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. RESULTS: Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. CONCLUSIONS: Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention.


Assuntos
Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Eletrocardiografia , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Itália , Masculino , Modelos Biológicos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Linhagem , Fenótipo , Conformação Proteica , Transporte Proteico
10.
Pflugers Arch ; 472(7): 961-975, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361781

RESUMO

In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Miotonia Congênita/metabolismo
11.
Mol Cell Biochem ; 470(1-2): 189-197, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32447718

RESUMO

In Duchenne muscular dystrophy (DMD), telomere shortening has been postulated to contribute to the failure of regenerative activity promoting the premature senescence of satellite cells. The aim of the present study was to investigate the telomere length and the expression of telomeric repeat-binding factor-1 (TRF1), poly (ADP-ribose) polymerase-1 (PARP1) and mouse telomerase reverse transcriptase (MTERT) in gastrocnemius, tibialis anterior and diaphragm muscles of the murine model of DMD, the mdx mouse and whether a chronic protocol of forced exercise impacts on them. Our results confirmed a telomere shortening in mdx muscles, more evident in the diaphragm, in which exercise induced a greater shortening than in wild-type mice. Moreover, we showed for the first time in mdx an increased TRF1 and PARP1 expression and an augmented activity of MTERT, further enhanced by exercise. These results reinforce the hypothesis that a deregulation of mechanisms involved in telomere length occurs and may pave the way for the test of compounds targeting proteins modulating telomere maintenance as a novel strategy to treat dystrophinopathies.


Assuntos
Distrofia Muscular de Duchenne/metabolismo , Condicionamento Físico Animal , Poli(ADP-Ribose) Polimerase-1/genética , Telomerase/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Animais , Modelos Animais de Doenças , Genótipo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Transdução de Sinais , Encurtamento do Telômero
12.
Pharmacol Res ; 158: 104917, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485610

RESUMO

At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.


Assuntos
Betacoronavirus , Infecções por Coronavirus/dietoterapia , Suplementos Nutricionais/efeitos adversos , Interações Medicamentosas , Distrofia Muscular de Duchenne/dietoterapia , Pneumonia Viral/dietoterapia , Padrão de Cuidado , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Distrofia Muscular de Duchenne/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2
13.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069876

RESUMO

Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since it is a negative predictor of treatment outcome and associated to increased mortality. However, despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced muscle wasting are urgently needed. The dissection of the molecular pathways responsible for cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we report an update of the most relevant researches on the mechanisms underlying cisplatin-induced muscle wasting and on the most promising potential therapeutic options to preserve muscle mass and function.


Assuntos
Caquexia/genética , Grelina/genética , Atrofia Muscular/genética , Neoplasias/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Caquexia/induzido quimicamente , Caquexia/patologia , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/genética
14.
FASEB J ; 32(2): 1025-1043, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097503

RESUMO

Muscle fibers lacking dystrophin undergo a long-term alteration of Ca2+ homeostasis, partially caused by a leaky Ca2+ release ryanodine (RyR) channel. S48168/ARM210, an RyR calcium release channel stabilizer (a Rycal compound), is expected to enhance the rebinding of calstabin to the RyR channel complex and possibly alleviate the pathologic Ca2+ leakage in dystrophin-deficient skeletal and cardiac muscle. This study systematically investigated the effect of S48168/ARM210 on the phenotype of mdx mice by means of a first proof-of-concept, short (4 wk), phase 1 treatment, followed by a 12-wk treatment (phase 2) performed in parallel by 2 independent laboratories. The mdx mice were treated with S48168/ARM210 at two different concentrations (50 or 10 mg/kg/d) in their drinking water for 4 and 12 wk, respectively. The mice were subjected to treadmill sessions twice per week (12 m/min for 30 min) to unmask the mild disease. This testing was followed by in vivo forelimb and hindlimb grip strength and fatigability measurement, ex vivo extensor digitorum longus (EDL) and diaphragm (DIA) force contraction measurement and histologic and biochemical analysis. The treatments resulted in functional (grip strength, ex vivo force production in DIA and EDL muscles) as well as histologic improvement after 4 and 12 wk, with no adverse effects. Furthermore, levels of cellular biomarkers of calcium homeostasis increased. Therefore, these data suggest that S48168/ARM210 may be a safe therapeutic option, at the dose levels tested, for the treatment of Duchenne muscular dystrophy (DMD).-Capogrosso, R. F., Mantuano, P., Uaesoontrachoon, K., Cozzoli, A., Giustino, A., Dow, T., Srinivassane, S., Filipovic, M., Bell, C., Vandermeulen, J., Massari, A. M., De Bellis, M., Conte, E., Pierno, S., Camerino, G. M., Liantonio, A., Nagaraju, K., De Luca, A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Distrofina/deficiência , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia
16.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704045

RESUMO

New scientific findings have recently shown that dasatinib (DAS), the first-choice oral drug in the treatment of chronic myeloid leukemia (CML) for adult patients who are resistant or intolerant to imatinib, is also potentially useful in the paediatric age. Moreover, recent preclinical evidences suggest that this drug could be useful for the treatment of Duchenne muscular dystrophy, since it targets cSrc tyrosin kinase. Based on these considerations, the purpose of this work was to use the strategy of complexation with hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in order to obtain an aqueous preparation of DAS, which is characterized by a low water solubility (6.49 × 10-4 mg/mL). Complexation studies demonstrated that HP-ß-CD is able to form a stable host-guest inclusion complex with DAS with a 1:1 apparent formation constant of 922.13 M-1, as also demonstrated by the Job's plot, with an increase in DAS aqueous solubility of about 21 times in the presence of 6% w/v of HP-ß-CD (0.014 mg/mL). The inclusion complex has been prepared in the solid state by lyophilization and characterized by Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimetry (DSC) techniques, and its dissolution profile was studied at different pH values. Moreover, in view of potential use of DAS for Duchenne muscular dystrophy, the cytotoxic effect of the inclusion complex has been assessed on C2C12 cells, a murine muscle satellite cell line. In parallel, a one-week oral treatment was performed in wild type C57Bl/6J mice to test both palatability and the exposure levels of the new oral formulation of the compound. In conclusion, this new inclusion complex could allow the development of a liquid and solvent free formulation to be administered both orally and parenterally, especially in the case of an administration in paediatric age.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Dasatinibe/química , Doenças Neuromusculares/tratamento farmacológico , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular de Duchenne , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Exp Cell Res ; 343(2): 190-207, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27015747

RESUMO

The blood-brain barrier (BBB) is altered in mdx mouse, an animal model to study Duchenne muscular dystrophy (DMD). Our previous work demonstrated that perivascular glial endfeet control the selective exchanges between blood and neuropil as well as the BBB development and integrity; the alterations of dystrophin and dystrophin-associated protein complex (DAPs) in the glial cells of mdx mouse, parallel damages of the BBB and increase in vascular permeability. The aim of this study was to improve our knowledge about brain cellular components in the mdx mouse through the isolation, for the first time, of the adult neural stem cells (ANSCs). We characterized them by FACS, electron microscopy, confocal immunofluorescence microscopy, Real Time-PCR and western blotting, and we studied the expression of the DAPs aquaporin-4 (AQP4), potassium channel Kir4.1, α- and ß-dystroglycan (αDG, ßDG), α-syntrophin (αSyn), and short dystrophin isoform Dp71 proteins. The results showed that the mdx ANSCs expressed CD133 and Nestin receptor as the control ones, but showed a reduction in Notch receptor and altered cell proliferation with an increment in the apoptotic nuclei. Ultrastructurally, they appeared 50% size reduced compared to control ones, with a few cytoplasmic organelles. Moreover, the mdx ANSCs are devoid in full length dystrophin 427, and they expressed post-transcriptional reduction in the Dp71 in parallel with the ubiquitin proteasome activation, and decrement of DAPs proteins which appeared diffused in the cytoplasm and not polarized on the stem cells plasmamembrane, as prevalently observed in the controls. Overall, these results indicate that structural and molecular alterations affect the neural stem cells in the dystrophic brain, whose increased apoptosis and reduced Dp71 and DAPs proteins expression, together with loss in Dp427 dystrophin, could be responsible of the altered mdx glial maintenance and differentiation and consequent failure in the vessels barrier control occurring in the adult dystrophic brain.


Assuntos
Separação Celular/métodos , Distrofia Muscular Animal/patologia , Células-Tronco Neurais/citologia , Antígeno AC133/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Aquaporina 4/metabolismo , Western Blotting , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Distroglicanas/metabolismo , Distrofina/metabolismo , Citometria de Fluxo , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Proteínas Musculares , Distrofia Muscular Animal/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esferoides Celulares/citologia , Esferoides Celulares/ultraestrutura , Ubiquitina/metabolismo
18.
Hum Mol Genet ; 23(21): 5720-32, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916377

RESUMO

Weakness and fatigability are typical features of Duchenne muscular dystrophy patients and are aggravated in dystrophic mdx mice by chronic treadmill exercise. Mechanical activity modulates gene expression and muscle plasticity. Here, we investigated the outcome of 4 (T4, 8 weeks of age) and 12 (T12, 16 weeks of age) weeks of either exercise or cage-based activity on a large set of genes in the gastrocnemius muscle of mdx and wild-type (WT) mice using quantitative real-time PCR. Basal expression of the exercise-sensitive genes peroxisome-proliferator receptor γ coactivator 1α (Pgc-1α) and Sirtuin1 (Sirt1) was higher in mdx versus WT mice at both ages. Exercise increased Pgc-1α expression in WT mice; Pgc-1α was downregulated by T12 exercise in mdx muscles, along with Sirt1, Pparγ and the autophagy marker Bnip3. Sixteen weeks old mdx mice showed a basal overexpression of the slow Mhc1 isoform and Serca2; T12 exercise fully contrasted this basal adaptation as well as the high expression of follistatin and myogenin. Conversely, T12 exercise was ineffective in WT mice. Damage-related genes such as gp91-phox (NADPH-oxidase2), Tgfß, Tnfα and c-Src tyrosine kinase were overexpressed in mdx muscles and not affected by exercise. Likewise, the anti-inflammatory adiponectin was lower in T12-exercised mdx muscles. Chronic exercise with minor adaptive effects in WT muscles leads to maladaptation in mdx muscles with a disequilibrium between protective and damaging signals. Increased understanding of the pathways involved in the altered mechanical-metabolic coupling may help guide appropriate physical therapies while better addressing pharmacological interventions in translational research.


Assuntos
Expressão Gênica , Músculos/metabolismo , Distrofia Muscular de Duchenne/genética , Condicionamento Físico Animal , Fatores Etários , Análise de Variância , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Modelos Biológicos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fatores de Tempo
19.
Toxicol Appl Pharmacol ; 306: 36-46, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377005

RESUMO

Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.


Assuntos
Envelhecimento/fisiologia , Atorvastatina/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Atrofia Muscular/induzido quimicamente , Envelhecimento/metabolismo , Animais , Atorvastatina/sangue , Atorvastatina/farmacocinética , Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatina Quinase/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fatores de Transcrição MEF2 , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos Wistar
20.
Pharmacol Res ; 106: 101-113, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26930420

RESUMO

Antioxidants have a great potential as adjuvant therapeutics in patients with Duchenne muscular dystrophy, although systematic comparisons at pre-clinical level are limited. The present study is a head-to-head assessment, in the exercised mdx mouse model of DMD, of natural compounds, resveratrol and apocynin, and of the amino acid taurine, in comparison with the gold standard α-methyl prednisolone (PDN). The rationale was to target the overproduction of reactive oxygen species (ROS) via disease-related pathways that are worsened by mechanical-metabolic impairment such as inflammation and over-activity of NADPH oxidase (NOX) (taurine and apocynin, respectively) or the failing ROS detoxification mechanisms via sirtuin-1 (SIRT1)-peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) (resveratrol). Resveratrol (100mg/kg i.p. 5days/week), apocynin (38mg/kg/day per os), taurine (1g/kg/day per os), and PDN (1mg/kg i.p., 5days/week) were administered for 4-5 weeks to mdx mice in parallel with a standard protocol of treadmill exercise and the outcome was evaluated with a multidisciplinary approach in vivo and ex vivo on pathology-related end-points and biomarkers of oxidative stress. Resveratrol≥taurine>apocynin enhanced in vivo mouse force similarly to PDN. All the compounds reduced the production of superoxide anion, assessed by dihydroethidium staining, with apocynin being as effective as PDN, and ameliorated electrophysiological biomarkers of oxidative stress. Resveratrol also significantly reduced plasma levels of creatine kinase and lactate dehydrogenase. Force of isolated muscles was little ameliorated. However, the three compounds improved histopathology of gastrocnemius muscle more than PDN. Taurine>apocynin>PDN significantly decreased activated NF-kB positive myofibers. Thus, compounds targeting NOX-ROS or SIRT1/PGC-1α pathways differently modulate clinically relevant DMD-related endpoints according to their mechanism of action. With the caution needed in translational research, the results show that the parallel assessment can help the identification of best adjuvant therapies.


Assuntos
Acetofenonas/farmacologia , Metilprednisolona/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Taurina/farmacologia , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa