Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112492

RESUMO

This paper reports the architecture of a low-cost smart crutches system for mobile health applications. The prototype is based on a set of sensorized crutches connected to a custom Android application. Crutches were instrumented with a 6-axis inertial measurement unit, a uniaxial load cell, WiFi connectivity, and a microcontroller for data collection and processing. Crutch orientation and applied force were calibrated with a motion capture system and a force platform. Data are processed and visualized in real-time on the Android smartphone and are stored on the local memory for further offline analysis. The prototype's architecture is reported along with the post-calibration accuracy for estimating crutch orientation (5° RMSE in dynamic conditions) and applied force (10 N RMSE). The system is a mobile-health platform enabling the design and development of real-time biofeedback applications and continuity of care scenarios, such as telemonitoring and telerehabilitation.


Assuntos
Aplicativos Móveis , Telemedicina , Humanos , Fenômenos Biomecânicos , Smartphone , Continuidade da Assistência ao Paciente , Marcha
2.
Sensors (Basel) ; 22(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35161527

RESUMO

The estimation of Direction of Arrival (DoA) of guided ultrasonic waves is an important task in many Structural Health Monitoring (SHM) applications. The aim is to locate sources of elastic waves which can be generated by impacts or defects in the inspected structures. In this paper, the array geometry and the shape of the piezo-sensors are designed to optimize the DoA estimation on a pre-defined angular sector, from acquisitions affected by noise and interference. In the proposed approach, the DoA of a wave generated by a single source is considered as a random variable that is uniformly distributed in a given range. The wave velocity is assumed to be unknown and the DoA estimation is performed by measuring the Differences in Time of Arrival (DToAs) of wavefronts impinging on the sensors. The optimization procedure of sensors positioning is based on the computation of the DoA and wave velocity parameters Cramér-Rao Matrix Bound (CRMB) with a Bayesian approach. An efficient DoA estimator is found based on the DToAs Gauss-Markov estimator for a three sensors array. Moreover, a novel directive sensor for guided waves is introduced to cancel out undesired Acoustic Sources impinging from DoAs out of the given angles range. Numerical results show the capability to filter directional interference of the novel sensor and a considerably improved DoA estimation performance provided by the optimized sensor cluster in the pre-defined angular sector, as compared to conventional approaches.

3.
Sensors (Basel) ; 22(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161836

RESUMO

In this work, different types of artificial neural networks are investigated for the estimation of the time of arrival (ToA) in acoustic emission (AE) signals. In particular, convolutional neural network (CNN) models and a novel capsule neural network are proposed in place of standard statistical strategies which cannot handle, with enough robustness, very noisy scenarios and, thus, cannot be sufficiently reliable when the signal statistics are perturbed by local drifts or outliers. This concept was validated with two experiments: the pure ToA identification capability was firstly assessed on synthetic signals for which a ground truth is available, showing a 10× gain in accuracy when compared to the classical Akaike information criterion (AIC). Then, the same models were tested via experimental data acquired in the framework of a localization problem to identify targets with known coordinates on a square aluminum plate, demonstrating an overreaching precision under significant noise levels.


Assuntos
Aprendizado Profundo , Acústica , Coleta de Dados , Redes Neurais de Computação , Ruído
4.
Sensors (Basel) ; 22(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336399

RESUMO

Artificial Intelligence applied to Structural Health Monitoring (SHM) has provided considerable advantages in the accuracy and quality of the estimated structural integrity. Nevertheless, several challenges still need to be tackled in the SHM field, which extended the monitoring process beyond the mere data analytics and structural assessment task. Besides, one of the open problems in the field relates to the communication layer of the sensor networks since the continuous collection of long time series from multiple sensing units rapidly consumes the available memory resources, and requires complicated protocol to avoid network congestion. In this scenario, the present work presents a comprehensive framework for vibration-based diagnostics, in which data compression techniques are firstly introduced as a means to shrink the dimension of the data to be managed through the system. Then, neural network models solving binary classification problems were implemented for the sake of damage detection, also encompassing the influence of environmental factors in the evaluation of the structural status. Moreover, the potential degradation induced by the usage of low cost sensors on the adopted framework was evaluated: Additional analyses were performed in which experimental data were corrupted with the noise characterizing MEMS sensors. The proposed solutions were tested with experimental data from the Z24 bridge use case, proving that the amalgam of data compression, optimized (i.e., low complexity) machine learning architectures and environmental information allows to attain high classification scores, i.e., accuracy and precision greater than 96% and 95%, respectively.


Assuntos
Compressão de Dados , Vibração , Inteligência Artificial , Aprendizado de Máquina , Redes Neurais de Computação
5.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35161495

RESUMO

The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy-Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with non-invasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin.


Assuntos
Ecossistema , Dispositivos Aéreos não Tripulados , Croácia , Pesqueiros , Itália
6.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027335

RESUMO

Composite materials are widely used in the industry, and the interest of this material is growing rapidly, due to its light weight, strength and various other desired mechanical properties. However, composite materials are prone to production defects and other defects originated during exploitation, which may jeopardize the safety of such a structure. Thus, non-destructive evaluation methods that are material-independent and suitable for a wide range of defects identification are needed. In this paper, a technique for damage characterization in composite plates is proposed. In the presented non-destructive testing method, guided waves are excited by a piezoelectric transducer, attached to tested specimens, and measured by a scanning laser Doppler vibrometer in a dense grid of points. By means of signal processing, irregularities in wavefield images caused by any material defects are extracted and used for damage characterization. The effectiveness of the proposed technique is validated on four different composite panels: Carbon fiber-reinforced polymer, glass fiber-reinforced polymer, composite reinforced by randomly-oriented short glass fibers and aluminum-honeycomb core sandwich composite. Obtained results confirm its versatility and efficacy in damage characterization in various types of composite plates.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38935472

RESUMO

Key requirements to boost the applicability of Ultrasonic systems for in-situ, real-time operations are low hardware complexity and low power consumption. These features are not available in present-day systems due to the fact that US inspections are typically achieved through phased arrays featuring a large number of individually controlled piezoelectric transducers, and generating huge quantities of data. To minimize the energy and computational requirements novel devices that feature enhanced functionalities beyond the mere conversion (i.e. meta-transducers) can be conceived. This paper reviews the potential of recent research breakthroughs in the transducer technology which allow them to efficiently perform tasks such as focusing, energy harvesting, beamforming, data communication, or mode filtering, and discusses the challenges for the widespread adoption of these solutions.

8.
Micromachines (Basel) ; 14(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374739

RESUMO

In Structural Health Monitoring (SHM) applications, the Direction of Arrival (DoA) estimation of Guided Waves (GW) on sensor arrays is often used as a fundamental means to locate Acoustic Sources (AS) generated by damages growth or undesired impacts in thin-wall structures (e.g., plates or shells). In this paper, we consider the problem of designing the arrangement and shape of piezo-sensors in planar clusters in order to optimize the DoA estimation performance in noise-affected measurements. We assume that: (i) the wave propagation velocity is unknown, (ii) the DoA is estimated via the time delays of wavefronts between sensors, and (iii) the maximum value of the time delays is limited. The optimality criterion is derived basing on the Theory of Measurements. The sensor array design is so that the DoA variance is minimized in an average sense by exploiting the Calculus of Variations. In this way, considering a three-sensor cluster and a monitored angles sector of 90°, the optimal time delays-DoA relations are derived. A suitable re-shaping procedure is used to impose such relations and, at the same time, to induce the same spatial filtering effect between sensors so that the sensor acquired signals are equal except for a time-shift. In order to achieve the last aim, the sensors shape is realized by exploiting a technique called Error Diffusion, which is able to emulate piezo-load functions with continuously modulated values. In this way, the Shaped Sensors Optimal Cluster (SS-OC) is derived. A numerical assessment via Green's functions simulations shows improved performance in DoA estimation by means of the SS-OC when compared to clusters realized with conventional piezo-disk transducers.

9.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(11): 1494-1505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578907

RESUMO

A novel directional transducer based on guided waves (GWs) is introduced in this article, designed for use in structural health monitoring (SHM) and acoustic data communication applications, i.e., systems in which the elastic medium serves as a transmission channel and information is conveyed through the medium via elastic waves. Such systems can overcome difficulties associated with traditional communication methods like wire-based or radio frequency (RF), which can be complex and have limitations in harsh environments or hard-to-reach places. However, the development of these techniques is hampered by GW dispersive and multimodal propagation and by multipath interference. The shortcomings can be effectively addressed by employing frequency steerable acoustic transducers (FSATs), which leverage their inherent directional capabilities. This can be achieved through the exploitation of a frequency-dependent spatial filtering effect, yielding a direct correlation between the frequency content of the transmitted or received signals and the direction of propagation. The proposed transducer is designed to actuate or sense the A0 Lamb wave propagating in three orientations using varying frequencies and has three channels with distinct frequencies for each direction, ranging from 50 to 450 kHz. The transducer performance was verified through finite element (FE) simulations, accompanied by experimental testing using a scanning laser Doppler vibrometer (SLDV). The unique frequency-steering capability of FSATs is combined with the ON-OFF keying (OOK) modulation scheme to achieve frequency directivity in hardware, similar to ongoing research in 5G communications. The multiple-in-multiple-out (MIMO) capabilities of the transducer were finally tested over a thin aluminum plate, showing excellent agreement with the FE simulation results.

10.
Micromachines (Basel) ; 14(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38004949

RESUMO

The aim of this work is to present a preliminary study for the design of a digital auscultation system, i.e., a novel wearable device for patient chest auscultation and a digital stethoscope. The development and testing of the electronic stethoscope prototype is reported with an emphasis on the description and selection of sound transduction systems and analog electronic processing. The focus on various microphone technologies, such as micro-electro-mechanical systems (MEMSs), electret condensers, and piezoelectronic diaphragms, intends to emphasize the most suitable transducer for auscultation. In addition, we report on the design and development of a digital acquisition system for the human body for sound recording by using a modular device approach in order to fit the chosen analog and digital mics. Tests were performed on a designed phantom setup, and a qualitative comparison between the sounds recorded with the newly developed acquisition device and those recorded with two commercial digital stethoscopes is reported.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35333713

RESUMO

Digital beamforming methods in plate-like structures are widely exploited for Lamb waves-based damage imaging. Among them, the delay and sum (DAS) imaging technique is the most popular thanks to its low-computational cost and ease of implementation. However, the imaging outputs are low quality due to the high levels of side lobes and limited off-axis signal rejection, which leads to limited image resolution and contrast. Recently, the delay multiply and sum (DMAS) beamforming has been applied to nondestructive testing (NDT) field as a promising DAS alternative able to enhance the imaging reconstruction in terms of contrast and damage detectability. However, DMAS is still affected by high levels of artifacts. To tackle this aspect, literature offers a beamforming algorithm called double-stage DMAS (DS-DMAS), first introduced in photoacoustic imaging and medical ultrasound imaging. In this article, the DS-DMAS performance is analyzed for Lamb waves inspection, to provide an exhaustive comparison between DAS, DMAS, and DS-DMAS. As a further step, a filtering process addressed as Fresnel zone filtering (FZF) is used to restrict the beamforming partial sums in a physical way to the area around the scattering point. The proposed approach is an adaptation of a well-established technique in seismic data processing called Fresnel migration, able to suppress artifacts and enhance the quality of the imaging. The algorithms have been compared and characterized by exploiting an online free dataset for guided waves inspection (ht.tp://openguidedwaves.de/) which collects piezo pitch-catch signals traveling through a quasi-isotropic carbon fiber-reinforced plate (CFRP) at different actuated frequencies and damage positions.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ultrassonografia/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-34410923

RESUMO

Experimental characterization of Lamb waves in plate-like structures overcomes the intrinsic limits of a priori semianalytical finite element simulations, where material inaccuracies and nonidealities cannot be easily considered. Unfortunately, the experimental extraction of guided wave dispersion curves, and especially their polar representation along different directions of propagation at a given frequency, is not trivial. In nonisotropic materials, such analysis is a key aspect for a reliable and robust characterization of the behavior of waves. In this work, by exploiting scanning laser Doppler vibrometer measurements with narrowband excitation, two different signal processing methods for the extraction of the wavenumber polar representation at the excitation frequency are investigated and characterized. The first method is based on a distance regularized level set (DRLSE) algorithm, widely used in image processing and computer vision but, to the best of the author's knowledge, never used in the Lamb waves' field. The second method is based on the 2-D sparse wavenumber analysis which exploits the wavefield sparse representation in the wavenumber domain. With a precise and reliable extraction of the wavenumber characteristic in the k -space, the polar representations at the excitation frequency of phase and group velocities can be estimated. The former, by exploiting the well-known wavenumber-frequency relation, the latter, instead, by computing numerical derivative among wavenumbers at multiple frequencies. The methodology has been validated on three different composite plates with different degrees of nonisotropy properties. The results show the effectiveness of the two methods, highlighting the advantages and disadvantages of both.


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Processamento de Imagem Assistida por Computador
13.
Artigo em Inglês | MEDLINE | ID: mdl-31135358

RESUMO

Guided wave methodologies are among the established approaches for structural health monitoring (SHM). For guided wave data, being able to accurately estimate wave properties in the absence of ample measurements can greatly facilitate the often time-consuming and potentially expensive data acquisition procedure. Nevertheless, inherent complexities of the guided waves, including their multimodal and frequency dispersive nature, hinder processing, analysis, and behavior prediction. The severity of these complexities is even higher in anisotropic media, such as composites. Several methods, including sparse wavenumber analysis (SWA), have been proposed in the literature to characterize guided wave propagation by extracting wave characteristics in a particular medium from the information contained in a few measurements, and subsequently using this information for full wavefield prediction. In this paper, we investigate the efficacy of guided wave reconstruction techniques, based on SWA, for predicting the behavior of guided waves in composite materials. We implement these techniques on several experimental and simulation data sets. We study their performance in estimating the frequency-dependent (dispersive) and anisotropic velocities of guided waves and in reconstructing full wavefields from limited available information.

14.
Artigo em Inglês | MEDLINE | ID: mdl-29389658

RESUMO

One of the main challenges faced by the structural health monitoring community is acquiring and processing huge sets of acoustic wavefield data collected from sensors, such as scanning laser Doppler vibrometers or ultrasonic scanners. In fact, extracting information that allows the estimation of the damage condition of a structure can be a time-consuming process. This paper presents a damage detection and localization technique based on a compressive sensing algorithm, which significantly allows us to reduce the acquisition time without losing in detection accuracy. The proposed technique exploits the sparsity of the wavefield in different representation domains, such as those spanned by wave atoms, curvelets, and Fourier exponentials to recover the full wavefield and, at the same time, to infer the damage location, based on comparison between the wavefield reconstructions produced by the different representation domains. The procedure is applied to three different setups related to an aluminum plate with a notch, a glass fiber reinforced polymer plate with a notch, and a composite plate with a delamination. The results show that the technique can be applied in a variety of structural components to reduce acquisition time and achieve high performance in defect detection and localization by removing up to 80% of the Nyquist sampling grid.


Assuntos
Compressão de Dados/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia Doppler/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
15.
Int J Cardiovasc Imaging ; 33(8): 1159-1167, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28321681

RESUMO

The aim of this study was to analyze the whole temporal profiles of the segmental deformation curves of the left ventricle (LV) and describe their interrelations to obtain more detailed information concerning global LV function in order to be able to identify abnormal changes in LV mechanics. The temporal characteristics of the segmental LV deformation curves were compactly described using an efficient decomposition into major patterns of variation through a statistical method, called Principal Component Analysis (PCA). In order to describe the spatial relations between the segmental traces, the PCA-derived temporal features of all LV segments were concatenated. The obtained set of features was then used to build an automatic classification system. The proposed methodology was applied to a group of 60 MRI-delayed enhancement confirmed infarct patients and 60 controls in order to detect myocardial infarction. An average classification accuracy of 87% with corresponding sensitivity and specificity rates of 89% and 85%, respectively was obtained by the proposed methodology applied on the strain rate curves. This classification performance was better than that obtained with the same methodology applied on the strain curves, reading of two expert cardiologists as well as comparative classification systems using only the spatial distribution of the end-systolic strain and peak-systolic strain rate values. This study shows the potential of machine learning in the field of cardiac deformation imaging where an efficient representation of the spatio-temporal characteristics of the segmental deformation curves allowed automatic classification of infarcted from control hearts with high accuracy.


Assuntos
Diagnóstico por Computador/métodos , Ecocardiografia Doppler em Cores/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Função Ventricular Esquerda , Automação , Fenômenos Biomecânicos , Estudos de Casos e Controles , Humanos , Imageamento por Ressonância Magnética , Infarto do Miocárdio/classificação , Infarto do Miocárdio/fisiopatologia , Variações Dependentes do Observador , Reconhecimento Automatizado de Padrão , Valor Preditivo dos Testes , Análise de Componente Principal , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Fatores de Tempo
16.
Artigo em Inglês | MEDLINE | ID: mdl-26168182

RESUMO

Numerous nondestructive evaluations and structural health monitoring approaches based on guide waves rely on analysis of wave fields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. The informative content which can be extracted from these inspections is relevant; however, the acquisition process is generally time-consuming, posing a limit in the applicability of such approaches. To reduce the acquisition time, we use a random sampling scheme based on compressive sensing (CS) to minimize the number of points at which the field is measured. The CS reconstruction performance is mostly influenced by the choice of a proper decomposition basis to exploit the sparsity of the acquired signal. Here, different bases have been tested to recover the guided waves wave field acquired on both an aluminum and a composite plate. Experimental results show that the proposed approach allows a reduction of the measurement locations required for accurate signal recovery to less than 34% of the original sampling grid.


Assuntos
Compressão de Dados/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Algoritmos
17.
Ultrasonics ; 56: 251-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25129653

RESUMO

In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps.

18.
Anticancer Res ; 35(9): 4733-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26254363

RESUMO

BACKGROUND: Infection with high-risk human papillomavirus (HPV) is linked to a sub-group of squamous cell oropharyngeal tumors (OPSCC). Our aim was to compare an HPV Polymerase Chain Reaction (PCR) assay and p16(INK4A) expression status by immunohistochemistry (IHC) as a surrogate marker. MATERIALS AND METHODS: This was a retrospective study considering patients affected by squamous cell oropharyngeal tumors. All included samples were processed for IHC for p16(INK4A) and tested by PCR for detection of HPV DNA and HPV genotyping. RESULTS: A total of 84 patients affected by squamous cell oropharyngeal tumors were included and tested. A significant positive correlation was found between HPV PCR and p16(INK4A) IHC but the agreement was poor (k coefficient of 0.25). In fact, the sensitivity of p16(INK4A) IHC positivity in detecting HPV PCR positivity was low (28.21%, 95% confidence interval=16.54% - 43.78%). CONCLUSION: Positivity of p16(INK4A) by IHC had a low sensitivity in detecting HPV DNA and our results suggest the need at least to test p16(INK4A) IHC- negative samples using HPV PCR to increase detection accuracy and provide valuable information for the clinical management of these patients.


Assuntos
Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Papillomaviridae/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/metabolismo , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Orofaríngeas/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-24081257

RESUMO

Compressive sensing (CS) has emerged as a potentially viable technique for the efficient compression and analysis of high-resolution signals that have a sparse representation in a fixed basis. In this work, we have developed a CS approach for ultrasonic signal decomposition suitable to achieve high performance in Lamb-wave-based defect detection procedures. In the proposed approach, a CS algorithm based on an alternating minimization (AM) procedure is adopted to extract the information about both the system impulse response and the reflectivity function. The implemented tool exploits the dispersion compensation properties of the warped frequency transform as a means to generate the sparsifying basis for the signal representation. The effectiveness of the decomposition task is demonstrated on synthetic signals and successfully tested on experimental Lamb waves propagating in an aluminum plate. Compared with available strategies, the proposed approach provides an improvement in the accuracy of wave propagation path length estimation, a fundamental step in defect localization procedures.

20.
Artigo em Inglês | MEDLINE | ID: mdl-22622979

RESUMO

Lamb wave testing for structural health monitoring (SHM) often relies on analysis of wavefields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. Damage detection and characterization with these techniques requires isolation of defect-induced reflections in the wavefield from the injected wave packet and from scattering events associated with structural features such as boundaries, rivets, joints, etc. This is a challenging task when dealing with complex structures and multimodal, dispersive propagation regimes, whereby various wave contributions in both the time/space and the frequency/wavenumber domain overlap. A new mathematical tool named warped curvelet frames (WCFs) is proposed to effectively decompose the recorded wavefields. The presented technique results from the combination of two operators, i.e., the curvelet transform (CT) and the warped frequency transform (WFT). The CT provides an optimally sparse representation of nondispersive wave propagators. Combining the CT with the WFT allows for a flexible analysis of multimodal wave propagation in dispersive media. Exploiting the spatial and temporal localization of curvelets, as well as the spectro-temporal adaptation of the analysis frame to the characteristics of each propagating mode, provided by frequency warping, a convenient decomposition of guided waves is achieved and relevant contributions can be effectively isolated. The proposed approach is validated through dedicated simulations and further tested experimentally to demonstrate the effectiveness of the method in separating guided wave modes corresponding to acoustic events in close spatial proximity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa