Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 854361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360022

RESUMO

Background: Activation of the renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of hypertension. Published evidence on a putative "memory effect" of AngII on the vascular components is however scarce. Aim: To evaluate the long-term effects of transient exposure to AngII on the mouse heart and the arterial tissue. Methods: Blood pressure, cardiovascular tissue damage and remodeling, and systemic oxidative stress were evaluated in C57/B6/J mice at the end of a 2-week AngII infusion (AngII); 2 and 3 weeks after the interruption of a 2-week AngII treatment (AngII+2W and AngII +3W; so-called "memory" conditions) and control littermate (CTRL). RNAseq profiling of aortic tissues was used to identify potential key regulated genes accounting for legacy effects on the vascular phenotype. RNAseq results were validated by RT-qPCR and immunohistochemistry in a reproduction cohort of mice. Key findings were reproduced in a homotypic cell culture model. Results: The 2 weeks AngII infusion induced cardiac hypertrophy and aortic damage that persisted beyond AngII interruption and despite blood pressure normalization, with a sustained vascular expression of ICAM1, infiltration by CD45+ cells, and cell proliferation associated with systemic oxidative stress. RNAseq profiling in aortic tissue identified robust Acta2 downregulation at transcript and protein levels (α-smooth muscle actin) that was maintained beyond interruption of AngII treatment. Among regulators of Acta2 expression, the transcription factor Myocardin (Myocd), exhibited a similar expression pattern. The sustained downregulation of Acta2 and Myocd was associated with an increase in H3K27me3 in nuclei of aortic sections from mice in the "memory" conditions. A sustained downregulation of ACTA2 and MYOCD was reproduced in the cultured human aortic vascular smooth muscle cells upon transient exposure to Ang II. Conclusion: A transient exposure to Ang II produces prolonged vascular remodeling with robust ACTA2 downregulation, associated with epigenetic imprinting supporting a "memory" effect despite stimulus withdrawal.

2.
Sci Transl Med ; 12(564)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028705

RESUMO

Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.


Assuntos
Aquaporina 1 , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
3.
Cardiovasc Res ; 112(1): 478-90, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27520736

RESUMO

AIM: Cardiac progenitor cells (CPC) from adult hearts can differentiate to several cell types composing the myocardium but the underlying molecular pathways are poorly characterized. We examined the role of paracrine nitric oxide (NO) in the specification of CPC to the cardiac lineage, particularly through its inhibition of the canonical Wnt/ß-catenin pathway, a critical step preceding cardiac differentiation. METHODS AND RESULTS: Sca1 + CPC from adult mouse hearts were isolated by magnetic-activated cell sorting and clonally expanded. Pharmacologic NO donors increased their expression of cardiac myocyte-specific sarcomeric proteins in a concentration and time-dependent manner. The optimal time window for NO efficacy coincided with up-regulation of CPC expression of Gucy1a3 (coding the alpha1 subunit of guanylyl cyclase). The effect of paracrine NO was reproduced in vitro upon co-culture of CPC with cardiac myocytes expressing a transgenic NOS3 (endothelial nitric oxide synthase) and in vivo upon injection of CPC in infarcted hearts from cardiac-specific NOS3 transgenic mice. In mono- and co-cultures, this effect was abrogated upon inhibition of soluble guanylyl cyclase or nitric oxide synthase, and was lost in CPC genetically deficient in Gucy1a3. Mechanistically, NO inhibits the constitutive activity of the canonical Wnt/ß-catenin in CPC and in cell reporter assays in a guanylyl cyclase-dependent fashion. This was paralleled with decreased expression of ß-catenin and down-regulation of Wnt target genes in CPC and abrogated in CPC with a stabilized, non-inhibitable ß-catenin. CONCLUSIONS: Exogenous or paracrine sources of NO promote the specification towards the myocyte lineage and expression of cardiac sarcomeric proteins of adult CPC. This is contingent upon the expression and activity of the alpha1 subunit of guanylyl cyclase in CPC that is necessary for NO-mediated inhibition of the canonical Wnt/ß-catenin pathway.


Assuntos
Células-Tronco Adultas/metabolismo , Diferenciação Celular , GMP Cíclico/metabolismo , Miócitos Cardíacos/enzimologia , Óxido Nítrico/metabolismo , Comunicação Parácrina , Sarcômeros/enzimologia , Guanilil Ciclase Solúvel/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Animais , Antígenos Ly/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Separação Imunomagnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Transdução de Sinais , Guanilil Ciclase Solúvel/deficiência , Guanilil Ciclase Solúvel/genética , Fatores de Tempo , Transfecção , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa