Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(42): 10158-10173, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850250

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Treatments for occluded arteries include balloon angioplasty with or without stenting and bypass grafting surgery. Poly(ethylene terephthalate) is frequently used as a vascular graft material, but its high stiffness leads to compliance mismatch with the human blood vessels, resulting in altered hemodynamics, thrombus formation and graft failure. Poly(alkylene terephthalate)s (PATs) with longer alkyl chain lengths hold great potential for improving the compliance. In this work, the effect of the polymer molar mass and the alkyl chain length on the surface roughness and wettability of spin-coated PAT films was investigated, as well as the endothelial cell adhesion and proliferation on these samples. We found that surface roughness generally increases with increasing molar mass and alkyl chain length, while no trend for the wettability could be observed. All investigated PATs are non-cytotoxic and support endothelial cell adhesion and growth. For some PATs, the endothelial cells even reorganized into a tubular-like structure, suggesting angiogenic maturation. In conclusion, this research demonstrates the biocompatibility of PATs and their potential to be applied as materials serving cardiovascular applications.


Assuntos
Células Endoteliais , Polímeros , Humanos , Adesão Celular , Polímeros/farmacologia , Polímeros/química , Propriedades de Superfície
2.
Biomater Sci ; 10(10): 2440-2461, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35343525

RESUMO

Currently, the treatment of corneal diseases caused by damage to the corneal endothelium requires a donor cornea. Because of their limited availability (1 donor cornea for 70 patients in need), researchers are investigating alternative approaches that are independent of donor tissue. One of them includes the development of a tissue engineered scaffold onto which corneal endothelial cells are seeded. In order to function as a suitable substrate, some of its essential properties including thickness, permeability, transparency and mechanical strength should meet certain demands. Additionally, the membrane should be biocompatible and allow the formation of a functional endothelium on the surface. Many materials have already been investigated in this regard including natural, semi-synthetic and synthetic polymers. In the current review, we present an overview of their characteristics and provide a critical view on the methods exploited for material characterization. Next, also the suitability of scaffolds to serve their purpose is discussed along with an overview of natural tissues (e.g. amniotic membrane and lens capsule) previously investigated for this application. Eventually, we propose a consistent approach to be exploited ideally for membrane characterization in future research. This will allow a scientifically sound comparison of materials and membranes investigated by different research groups, hence benefitting research towards the creation of a suitable/optimal tissue engineered endothelial graft.


Assuntos
Endotélio Corneano , Engenharia Tecidual , Células Endoteliais , Humanos , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa