Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(10): e2120536120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848565

RESUMO

During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs). Increasing the number of parallel fibers increases FACs and retraction fiber-driven stability, leading to reduced 3D cell body movement, metaphase plate rotations, increased interkinetochore distances, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by RFs from two perpendicular suspended fibers. We develop a cortex-astral microtubule analytical model to capture the retraction fiber dependence of the metaphase plate rotations. We observe that reduced orientational stability, on single fibers, results in increased monopolar mitotic defects, while multipolar defects become dominant as the number of adhered fibers increases. We use a stochastic Monte Carlo simulation of centrosome, chromosome, and membrane interactions to explain the relationship between the observed propensity of monopolar and multipolar defects and the geometry of RFs. Overall, we establish that while bipolar mitosis is robust in fibrous environments, the nature of division errors in fibrous microenvironments is governed by interphase cell shapes and adhesion geometries.


Assuntos
Divisão do Núcleo Celular , Mitose , Centrossomo , Aeronaves , Axônios
2.
Proc Natl Acad Sci U S A ; 119(41): e2208255119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191188

RESUMO

Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Aneuploidia , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
3.
Cell ; 137(4): 672-84, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450515

RESUMO

Chromosome segregation requires assembly of kinetochores on centromeric chromatin to mediate interactions with spindle microtubules and control cell-cycle progression. To elucidate the protein architecture of human kinetochores, we developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at <5 nm accuracy. Delta analysis of 16 proteins representing core structural complexes spanning the centromeric chromatin-microtubule interface, when correlated with mechanical states of spindle-attached kinetochores, provided a nanometer-scale map of protein position and mechanical properties of protein linkages. Treatment with taxol, which suppresses microtubule dynamics and activates the spindle checkpoint, revealed a specific switch in kinetochore architecture. Cumulatively, Delta analysis revealed that compliant linkages are restricted to the proximity of chromatin, suggested a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and identified an intrakinetochore molecular switch that may function in controlling checkpoint activity.


Assuntos
Cinetocoros/química , Cinetocoros/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Metáfase , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares
4.
J Biol Chem ; 295(43): 14666-14677, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820050

RESUMO

BuGZ is a kinetochore component that binds to and stabilizes Bub3, a key player in mitotic spindle assembly checkpoint signaling. Bub3 is required for kinetochore recruitment of Bub1 and BubR1, two proteins that have essential and distinct roles in the checkpoint. Both Bub1 and BubR1 localize to kinetochores through interactions with Bub3, which are mediated through conserved GLEBS domains in both Bub1 and BubR1. BuGZ also has a GLEBS domain, which is required for its kinetochore localization as well, presumably mediated through Bub3 binding. Although much is understood about the requirements for Bub1 and BubR1 interaction with Bub3 and kinetochores, much less is known regarding BuGZ's requirements. Here, we used a series of mutants to demonstrate that BuGZ kinetochore localization requires only its core GLEBS domain, which is distinct from the requirements for both Bub1 and BubR1. Furthermore, we found that the kinetics of Bub1, BubR1, and BuGZ loading to kinetochores differ, with BuGZ localizing prior to BubR1 and Bub1. To better understand how complexes containing Bub3 and its binding partners are loaded to kinetochores, we carried out size-exclusion chromatography and analyzed Bub3-containing complexes from cells under different spindle assembly checkpoint signaling conditions. We found that prior to kinetochore formation, Bub3 is complexed with BuGZ but not Bub1 or BubR1. Our results point to a model in which BuGZ stabilizes Bub3 and promotes Bub3 loading onto kinetochores in early mitosis, which, in turn, facilitates Bub1 and BubR1 kinetochore recruitment and spindle assembly checkpoint signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/análise , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/análise , Proteínas de Ligação a Poli-ADP-Ribose/análise , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/metabolismo
5.
Mol Cell ; 51(1): 3-4, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23849628

RESUMO

In this issue of Molecular Cell, Han et al. (2013) demonstrate that Mad2 induces a conformational change in Cdc20 that permits BubR1 binding, thereby producing the physiologically relevant APC/C(Cdc20) inhibitor.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/fisiologia , Proteínas Cdc20 , Humanos , Proteínas Mad2
6.
Proc Natl Acad Sci U S A ; 113(24): 6605-10, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27231219

RESUMO

Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Teóricos
7.
Microsc Microanal ; 23(6): 1197-1206, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29208065

RESUMO

Confocal microscopy was used to image stages of equine zygote development, at timed intervals, after intracytoplasmic sperm injection (ICSI) of oocytes that were matured in vivo or in vitro. After fixation for 4, 6, 8, 12, or 16 h after ICSI, zygotes were incubated with α/ß tubulin antibodies and human anticentromere antibody (CREST/ACA), washed, incubated in secondary antibodies, conjugated to either Alexa 488 or Alexa 647, and incubated with 561-Phalloidin and Hoechst 33258. An Olympus IX81 spinning disk confocal microscope was used for imaging. Data were analyzed using χ 2 and Fisher's exact tests. Minor differences in developmental phases were observed for oocytes matured in vivo or in vitro. Oocytes formed pronuclei earlier when matured in vivo (67% at 6 h and 80% at 8 h) than in vitro (13% at 6 and 8 h); 80% of oocytes matured in vitro formed pronuclei by 12 h. More (p=0.04) zygotes had atypical phenotypes, indicative of a failure of normal zygote development, when oocyte maturation occurred in vitro versus in vivo (30 and 11%, respectively). Some potential zygotes from oocytes matured in vivo had normal phenotypes, although development appeared to be delayed or arrested. Confocal microscopy provided a feasible method to assess equine zygote development using limited samples.


Assuntos
Fertilização , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Zigoto/citologia , Zigoto/crescimento & desenvolvimento , Animais , Cavalos , Microinjeções , Fatores de Tempo
8.
Chromosoma ; 123(3): 169-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24310619

RESUMO

KNL1 is an evolutionarily conserved kinetochore-associated protein essential for accurate chromosome segregation in eukaryotic cells. This large scaffold protein, predicted to be almost entirely unstructured, is involved in diverse mitotic processes including kinetochore assembly, chromosome congression, and mitotic checkpoint signaling. How this kinetochore "hub" coordinates protein-protein interactions spatially and temporally during mitosis to orchestrate these processes is an area of active investigation. Here we summarize the current understanding of KNL1 and discuss possible mechanisms by which this protein actively contributes to multiple aspects of mitotic progression.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Segregação de Cromossomos , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mitose , Ligação Proteica
9.
Reprod Fertil Dev ; 27(6): 944-56, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25798646

RESUMO

Intracytoplasmic sperm injection (ICSI) is an established method to fertilise equine oocytes, but not all oocytes cleave after ICSI. The aims of the present study were to examine cytoskeleton patterns in oocytes after aging in vitro for 0, 24 or 48h (Experiment 1) and in potential zygotes that failed to cleave after ICSI of oocytes from donors of different ages (Experiment 2). Cytoplasmic multiasters were observed after oocyte aging for 48h (P<0.01). A similar increase in multiasters was observed with an increased interval after ICSI for young mares (9-13 years) but not old (20-25 years) mares. Actin vesicles were observed more frequently in sperm-injected oocytes from old than young mares. In the present study, multiasters appeared to be associated with cell aging, whereas actin vesicles were associated with aging of the oocyte donor.


Assuntos
Citoesqueleto/metabolismo , Oócitos/metabolismo , Injeções de Esperma Intracitoplásmicas/veterinária , Espermatozoides/metabolismo , Zigoto/metabolismo , Fatores Etários , Animais , Feminino , Fertilização in vitro/veterinária , Cavalos , Masculino , Injeções de Esperma Intracitoplásmicas/métodos
10.
Nucleic Acids Res ; 41(7): 4026-35, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435226

RESUMO

The H1 linker histones are abundant chromatin-associated DNA-binding proteins. Recent evidence suggests that linker histones also may function through protein-protein interactions. To gain a better understanding of the scope of linker histone involvement in protein-protein interactions, we used a proteomics approach to identify H1-binding proteins in human nuclear extracts. Full-length H1.0 and H1.0 lacking its C-terminal domain (CTD) were used for protein pull-downs. A total of 107 candidate H1.0 binding proteins were identified by LC-MS/MS. About one-third of the H1.0-dependent interactions were mediated by the CTD, and two-thirds by the N-terminal domain-globular domain fragment. Many of the proteins pulled down by H1.0 were core splicing factors. Another group of H1-binding proteins functions in rRNA biogenesis. H1.0 also pulled down numerous ribosomal proteins and proteins involved in cellular transport. Strikingly, nearly all of the H1.0-binding proteins are found in the nucleolus. Quantitative biophysical studies with recombinant proteins confirmed that H1.0 directly binds to FACT and the splicing factors SF2/ASF and U2AF65. Our results demonstrate that H1.0 interacts with an extensive network of proteins that function in RNA metabolism in the nucleolus, and suggest that a new paradigm for linker histone action is in order.


Assuntos
Nucléolo Celular/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Histonas/química , Humanos , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteômica
11.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659898

RESUMO

Accurate positioning of the mitotic spindle within the rounded cell body is critical to physiological maintenance. Adherent mitotic cells encounter confinement from neighboring cells or the extracellular matrix (ECM), which can cause rotation of mitotic spindles and, consequently, titling of the metaphase plate (MP). To understand the positioning and orientation of mitotic spindles under confinement by fibers (ECM-confinement), we use flexible ECM-mimicking nanofibers that allow natural rounding of the cell body while confining it to differing levels. Rounded mitotic bodies are anchored in place by actin retraction fibers (RFs) originating from adhesion clusters on the ECM-mimicking fibers. We discover the extent of ECM-confinement patterns RFs in 3D: triangular and band-like at low and high confinement, respectively. A stochastic Monte-Carlo simulation of the centrosome (CS), chromosome (CH), membrane interactions, and 3D arrangement of RFs on the mitotic body recovers MP tilting trends observed experimentally. Our mechanistic analysis reveals that the 3D shape of RFs is the primary driver of the MP rotation. Under high ECM-confinement, the fibers can mechanically pinch the cortex, causing the MP to have localized deformations at contact sites with fibers. Interestingly, high ECM-confinement leads to low and high MP tilts, which mechanistically depend upon the extent of cortical deformation, RF patterning, and MP position. We identify that cortical deformation and RFs work in tandem to limit MP tilt, while asymmetric positioning of MP leads to high tilts. Overall, we provide fundamental insights into how mitosis may proceed in fibrous ECM-confining microenvironments in vivo.

12.
J Cell Sci ; 124(Pt 4): 622-34, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21266467

RESUMO

Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulating the stability of kinetochore-microtubule attachments but its relevant kinetochore targets in cells remain unclear. Here, we identify multiple serine residues within the N-terminus of the kinetochore protein Hec1 that are phosphorylated in an Aurora-B-kinase-dependent manner during mitosis. On all identified target sites, Hec1 phosphorylation at kinetochores is high in early mitosis and decreases significantly as chromosomes bi-orient. Furthermore, once dephosphorylated, Hec1 is not highly rephosphorylated in response to loss of kinetochore-microtubule attachment or tension. We find that a subpopulation of Aurora B kinase remains localized at the outer kinetochore even upon Hec1 dephosphorylation, suggesting that Hec1 phosphorylation by Aurora B might not be regulated wholly by spatial positioning of the kinase. Our results define a role for Hec1 phosphorylation in kinetochore-microtubule destabilization and error correction in early mitosis and for Hec1 dephosphorylation in maintaining stable attachments in late mitosis.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Aurora Quinase B , Aurora Quinases , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/química , Microtúbulos/química , Microtúbulos/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica
13.
Mol Biol Cell ; 34(7): ar76, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126397

RESUMO

During mitosis, kinetochore-microtubule attachments are monitored by a molecular surveillance system known as the spindle assembly checkpoint. The prevailing model posits that dynein evicts checkpoint proteins (e.g., Mad1, Mad2) from stably attached kinetochores by transporting them away from kinetochores, thus contributing to checkpoint silencing. However, the mechanism by which dynein performs this function, and its precise role in checkpoint silencing remain unresolved. Here, we find that dynein's role in checkpoint silencing is restricted to evicting checkpoint effectors from the fibrous corona, and not the outer kinetochore. Dynein evicts these molecules from the corona in a manner that does not require stable, end-on microtubule attachments. Thus, by disassembling the corona through indiscriminate microtubule encounters, dynein primes the checkpoint signaling apparatus so it can respond to stable end-on microtubule attachments and permit cells to progress through mitosis. Accordingly, we find that dynein function in checkpoint silencing becomes largely dispensable in cells in which checkpoint effectors are excluded from the corona.


Assuntos
Dineínas , Cinetocoros , Cinetocoros/metabolismo , Dineínas/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo
14.
STAR Protoc ; 3(4): 101915, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36595892

RESUMO

There are challenges to using commercially available antibodies generated in animals, including concerns with reproducibility, high costs, and ethical issues. Here, we present a protocol for generating and purifying recombinant antibodies from human HEK293 suspension culture cells from a primary sequence. We describe the steps to generate antibody heavy and light chain plasmids, followed by transfection of the plasmids into cells and purification of antibodies. This protocol can produce high-yield recombinant monoclonal antibodies at a relatively low cost. For complete details on the use and execution of this protocol, please refer to DeLuca et al. (2021).1.


Assuntos
Anticorpos Monoclonais , Animais , Humanos , Anticorpos Monoclonais/genética , Células HEK293 , Reprodutibilidade dos Testes , Proteínas Recombinantes/genética , Transfecção
15.
Curr Biol ; 18(22): 1778-84, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19026543

RESUMO

Accurate chromosome segregation is dependent upon stable attachment of kinetochores to spindle microtubules during mitosis. A long-standing question is how kinetochores maintain stable attachment to the plus ends of dynamic microtubules that are continually growing and shortening. The Ndc80 complex is essential for persistent end-on kinetochore-microtubule attachment in cells [1, 2], but how the Ndc80 complex forms functional microtubule-binding sites remains unknown. We show that the 80 amino acid N-terminal unstructured "tail" of Hec1 is required for generating stable kinetochore-microtubule attachments. PtK1 cells depleted of endogenous Hec1 and rescued with Hec1-GFP fusion proteins deleted of the entire N terminus or the disordered N-terminal 80 amino acid tail domain fail to generate stable kinetochore-microtubule attachments. Mutation of nine amino acids within the Hec1 tail to reduce its positive charge also abolishes stable attachment. Furthermore, the mitotic checkpoint remains functional after deletion of the N-terminal 80 amino acid tail, but not after deletion of the N-terminal 207 amino acid region containing both the tail domain and a calponin homology (CH) domain. These results demonstrate that kinetochore-microtubule binding is dependent on electrostatic interactions mediated through the disordered N-terminal 80 amino acid tail domain and mitotic-checkpoint function is dependent on the CH domain of Hec1.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Fluorescência Verde/análise , Cinetocoros/ultraestrutura , Microtúbulos/ultraestrutura , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Potoroidae , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/análise
16.
Mol Biol Cell ; 32(13): 1241-1255, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33956511

RESUMO

Mitotic kinetochores assemble via the hierarchical recruitment of numerous cytosolic components to the centromere region of each chromosome. However, how these orderly and localized interactions are achieved without spurious macromolecular assemblies forming from soluble kinetochore components in the cell cytosol remains poorly understood. We developed assembly assays to monitor the recruitment of green fluorescent protein-tagged recombinant proteins and native proteins from human cell extracts to inner kinetochore components immobilized on microbeads. In contrast to prior work in yeast and Xenopus egg extracts, we find that human mitotic cell extracts fail to support de novo assembly of microtubule-binding subcomplexes. A subset of interactions, such as those between CENP-A-containing nucleosomes and CENP-C, are permissive under these conditions. However, the subsequent phospho-dependent binding of the Mis12 complex is less efficient, whereas recruitment of the Ndc80 complex is blocked, leading to weak microtubule-binding activity of assembled particles. Using molecular variants of the Ndc80 complex, we show that auto-inhibition of native Ndc80 complex restricts its ability to bind to the CENP-T/W complex, whereas inhibition of the Ndc80 microtubule binding is driven by a different mechanism. Together, our work reveals regulatory mechanisms that guard against the spurious formation of cytosolic microtubule-binding kinetochore particles.


Assuntos
Centrômero/metabolismo , Cinetocoros/metabolismo , Mitose/fisiologia , Extratos Celulares , Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
17.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34970967

RESUMO

Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Humanos , Proteínas Recombinantes/imunologia
18.
Curr Biol ; 17(22): R966-9, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18029252

RESUMO

A recent study describes a novel role for the centrosomal protein Cep57 in attaching spindle microtubules to both kinetochores and centrosomes, suggesting similar mechanisms may be used for generating these two distinct linkages in mitosis.


Assuntos
Microtúbulos/fisiologia , Fuso Acromático/fisiologia , Animais , Centrossomo/química , Centrossomo/fisiologia , Humanos , Cinetocoros/química , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/química , Mitose/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Fuso Acromático/química
19.
Essays Biochem ; 64(2): 299-311, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32406506

RESUMO

The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key "orchestrators" of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.


Assuntos
Aurora Quinase B/metabolismo , Centrômero/enzimologia , Segregação de Cromossomos , Cinetocoros/enzimologia , Microtúbulos/enzimologia , Mitose , Fuso Acromático/enzimologia , Animais , Humanos
20.
Front Cell Dev Biol ; 8: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161753

RESUMO

Successful mitotic cell division is critically dependent on the formation of correct attachments between chromosomes and spindle microtubules. Microtubule attachments are mediated by kinetochores, which are large proteinaceous structures assembled on centromeric chromatin of mitotic chromosomes. These attachments must be sufficiently stable to transduce force; however, the strength of these attachments are also tightly regulated to ensure timely, error-free progression through mitosis. The highly conserved, kinetochore-associated NDC80 complex is a core component of the kinetochore-microtubule attachment machinery in eukaryotic cells. A small, disordered region within the Hec1 subunit of the NDC80 complex - the N-terminal "tail" domain - has been actively investigated during the last decade due to its roles in generating and regulating kinetochore-microtubule attachments. In this review, we discuss the role of the NDC80 complex, and specifically the Hec1 tail domain, at the kinetochore-microtubule interface, and how recent studies provide a more unified view of Hec1 tail domain function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa