Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 37(3): 351-359, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780798

RESUMO

MOTIVATION: Methods to assess the quality of protein structure models are needed for user applications. To aid with the selection of structure models and further inform the development of structure prediction techniques, we describe the ResiRole method for the assessment of the quality of structure models. RESULTS: Structure prediction techniques are ranked according to the results of round-robin, head-to-head comparisons using difference scores. Each difference score was defined as the absolute value of the cumulative probability for a functional site prediction made with the FEATURE program for the reference structure minus that for the structure model. Overall, the difference scores correlate well with other model quality metrics; and based on benchmarking studies with NaïveBLAST, they are found to detect additional local structural similarities between the structure models and reference structures. AVAILABILITYAND IMPLEMENTATION: Automated analyses of models addressed in CAMEO are available via the ResiRole server, URL http://protein.som.geisinger.edu/ResiRole/. Interactive analyses with user-provided models and reference structures are also enabled. Code is available at github.com/wamclaughlin/ResiRole. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Computadores , Conformação Proteica , Proteínas , Biologia Computacional , Probabilidade , Software
2.
BMC Struct Biol ; 13: 24, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24139526

RESUMO

BACKGROUND: Protein Structure Initiative:Biology (PSI:Biology) is the third phase of PSI where protein structures are determined in high-throughput to characterize their biological functions. The transition to the third phase entailed the formation of PSI:Biology Partnerships which are composed of structural genomics centers and biomedical science laboratories. We present a method to examine the impact of protein structures determined under the auspices of PSI:Biology by measuring their rates of annotations. The mean numbers of annotations per structure and per residue are examined. These are designed to provide measures of the amount of structure to function connections that can be leveraged from each structure. RESULTS: One result is that PSI:Biology structures are found to have a higher rate of annotations than structures determined during the first two phases of PSI. A second result is that the subset of PSI:Biology structures determined through PSI:Biology Partnerships have a higher rate of annotations than those determined exclusive of those partnerships. Both results hold when the annotation rates are examined either at the level of the entire protein or for annotations that are known to fall at specific residues within the portion of the protein that has a determined structure. CONCLUSIONS: We conclude that PSI:Biology determines structures that are estimated to have a higher degree of biomedical interest than those determined during the first two phases of PSI based on a broad array of biomedical annotations. For the PSI:Biology Partnerships, we see that there is an associated added value that represents part of the progress toward the goals of PSI:Biology. We interpret the added value to mean that team-based structural biology projects that utilize the expertise and technologies of structural genomics centers together with biological laboratories in the community are conducted in a synergistic manner. We show that the annotation rates can be used in conjunction with established metrics, i.e. the numbers of structures and impact of publication records, to monitor the progress of PSI:Biology towards its goals of examining structure to function connections of high biomedical relevance. The metric provides an objective means to quantify the overall impact of PSI:Biology as it uses biomedical annotations from external sources.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/química , Biologia Computacional , Genômica , Conformação Proteica , Proteínas/metabolismo , Proteômica , Análise de Sequência de Proteína , Homologia Estrutural de Proteína
3.
Biomolecules ; 12(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358909

RESUMO

We present the Pharmacorank search tool as an objective means to obtain prioritized protein drug targets and their associated medications according to user-selected diseases. This tool could be used to obtain prioritized protein targets for the creation of novel medications or to predict novel indications for medications that already exist. To prioritize the proteins associated with each disease, a gene similarity profiling method based on protein functions is implemented. The priority scores of the proteins are found to correlate well with the likelihoods that the associated medications are clinically relevant in the disease's treatment. When the protein priority scores are plotted against the percentage of protein targets that are known to bind medications currently indicated to treat the disease, which we termed the pertinency score, a strong correlation was observed. The correlation coefficient was found to be 0.9978 when using a weighted second-order polynomial fit. As the highly predictive fit was made using a broad range of diseases, we were able to identify a general threshold for the pertinency score as a starting point for considering drug repositioning candidates. Several repositioning candidates are described for proteins that have high predicated pertinency scores, and these provide illustrative examples of the applications of the tool. We also describe focused reviews of repositioning candidates for Alzheimer's disease. Via the tool's URL, https://protein.som.geisinger.edu/Pharmacorank/, an open online interface is provided for interactive use; and there is a site for programmatic access.


Assuntos
Doença de Alzheimer , Reposicionamento de Medicamentos , Humanos , Reposicionamento de Medicamentos/métodos , Proteínas , Algoritmos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa