Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 100, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37098540

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer with an appalling overall survival of less than 5% (Zimmerman et al. J Thor Oncol 14:768-83, 2019). Patients typically respond to front line platinum-based doublet chemotherapy, but almost universally relapse with drug resistant disease. Elevated MYC expression is common in SCLC and has been associated with platinum resistance. This study evaluates the capacity of MYC to drive platinum resistance and through screening identifies a drug capable of reducing MYC expression and overcoming resistance. METHODS: Elevated MYC expression following the acquisition of platinum resistance in vitro and in vivo was assessed. Moreover, the capacity of enforced MYC expression to drive platinum resistance was defined in SCLC cell lines and in a genetically engineered mouse model that expresses MYC specifically in lung tumors. High throughput drug screening was used to identify drugs able to kill MYC-expressing, platinum resistant cell lines. The capacity of this drug to treat SCLC was defined in vivo in both transplant models using cell lines and patient derived xenografts and in combination with platinum and etoposide chemotherapy in an autochthonous mouse model of platinum resistant SCLC. RESULTS: MYC expression is elevated following the acquisition of platinum resistance and constitutively high MYC expression drives platinum resistance in vitro and in vivo. We show that fimepinostat decreases MYC expression and that it is an effective single agent treatment for SCLC in vitro and in vivo. Indeed, fimepinostat is as effective as platinum-etoposide treatment in vivo. Importantly, when combined with platinum and etoposide, fimepinostat achieves a significant increase in survival. CONCLUSIONS: MYC is a potent driver of platinum resistance in SCLC that is effectively treated with fimepinostat.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Etoposídeo/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinases , Platina/farmacologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018884

RESUMO

Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.


Assuntos
Proteína Relacionada com Agouti/genética , Corpo Estriado/fisiologia , Dopamina/fisiologia , Homeostase , Neurônios/fisiologia , Transdução de Sinais , Proteína Relacionada com Agouti/metabolismo , Animais , Camundongos , Camundongos Knockout
3.
Nat Med ; 9(1): 33-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12496961

RESUMO

Cancer vaccines targeting 'self' antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of dsRNA-dependent protein kinase R (PKR). Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2',5'-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA.


Assuntos
Alphavirus/genética , Alphavirus/imunologia , Vacinas Anticâncer/imunologia , Tolerância Imunológica , Melanoma/imunologia , Glicoproteínas de Membrana , Oxirredutases , Proteínas/imunologia , Vacinas de DNA/imunologia , Animais , Vacinas Anticâncer/genética , Técnicas de Transferência de Genes , Genes Reporter , Humanos , Imunização , Imunoterapia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , Plasmídeos/imunologia , Plasmídeos/metabolismo , Proteínas/genética , Proteínas/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicon/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas , Vacinas de DNA/genética , Vacinas de DNA/metabolismo
4.
Eur J Radiol ; 144: 109987, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649143

RESUMO

Nuclear medicine and molecular imaging have a small but growing role in the management of paediatric and neonatal diseases. During the past decade, combined PET/MRI has emerged as a clinically important hybrid imaging modality in paediatric medicine due to diagnostic advantages and reduced radiation exposure compared to alternative techniques. The applications for nuclear medicine, radiopharmaceuticals and combined PET/MRI in paediatric diagnosis is broadly similar to adults, however there are some key differences. There are a variety of clinical applications for PET/MRI imaging in children including, but not limited to, oncology, neurology, cardiovascular, infection and chronic inflammatory diseases, and in renal-urological disorders. In this article, we review the applications of PET/MRI in paediatric and neonatal imaging, its current role, advantages and disadvantages over other hybrid imaging techniques such as PET/CT, and its future applications. Overall, PET/MRI is a powerful imaging technology in diagnostic medicine and paediatric diseases. Higher soft tissue contrasts and lower radiation dose of the MRI makes it the superior technology compared to other conventional techniques such as PET/CT or scintigraphy. However, this relatively new hybrid imaging has also some limitations. MRI based attenuation correction remains a challenge and although methodologies have improved significantly in the last decades, most remain under development.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Adulto , Criança , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Imagem Multimodal , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
5.
Cell Metab ; 26(2): 375-393.e7, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768176

RESUMO

Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance.


Assuntos
Ingestão de Alimentos/psicologia , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/biossíntese , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Obesidade/genética , Obesidade/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
6.
Cancer Res ; 64(16): 5850-60, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15313929

RESUMO

Double-stranded RNA (dsRNA) and unmethylated CpG sequences in DNA are pathogen-associated molecular patterns of viruses and bacteria that activate innate immunity. To examine whether dsRNA and CpG DNA could combine to provide enhanced stimulation of innate immune cells, murine macrophages were stimulated with poly-rI:rC (pIC), a dsRNA analog, and CpG-containing oligodeoxynucleotides (CpG-ODN). Combined treatments demonstrated synergy in nitric oxide, interleukin (IL)-12, tumor necrosis factor alpha, and IL-6 production. Studies using neutralizing antibodies for type I interferons (IFNs), IFN-alpha and IFN-beta, indicated that nitric oxide synthase synergism is mediated by paracrine/autocrine effects of IFN-beta. In contrast, enhanced cytokine production occurred independent of type I IFN and was maintained in macrophages from IFN-alpha/beta receptor knockout mice. Cotransfection of human Toll-like receptors 3 and 9 (receptors for dsRNA and CpG DNA, respectively) into 293T cells supported synergistic activation of an IL-8 promoter reporter construct by pIC, indicating interaction of the signaling pathways in driving the synergy response. In vivo stimulation of mice with pIC and CpG-ODN demonstrated synergy for serum IL-6 and IL-12p40 levels that correlated with an enhanced antitumor effect against established B16-F10 experimental pulmonary metastases. Treatment of tumor-bearing mice with pIC and CpG-ODN in combination resulted in enhanced nitric oxide synthase expression in lung tissue and enhanced up-regulation of class I major histocompatibility complex on splenic dendritic cells relative to treatments with either agent alone. In conclusion, the combined detection of viral pathogen-associated molecular patterns, i.e., dsRNA and CpG DNA, may mimic definitive viral recognition, resulting in an enhanced innate immune response that could be used for tumor vaccination or immunotherapy.


Assuntos
DNA/imunologia , Macrófagos/imunologia , RNA de Cadeia Dupla/imunologia , Animais , Linhagem Celular , Ilhas de CpG/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ativação Enzimática , Humanos , Interferon Tipo I/imunologia , Interleucina-12/biossíntese , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/biossíntese , Interleucina-8/genética , Interleucina-8/imunologia , Pulmão/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Melanoma Experimental/imunologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Poli I-C/farmacologia , Regiões Promotoras Genéticas , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptor Toll-Like 9 , Receptores Toll-Like , Transfecção , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa