Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Placenta ; 104: 146-160, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33348283

RESUMO

Acetaminophen is one of the most common medications taken during pregnancy, considered safe for maternal health and fetal development. However, recent epidemiological studies have associated prenatal acetaminophen use with several developmental disorders in offspring. As acetaminophen can freely cross into and through the placenta, epidemiological associations with prenatal acetaminophen use may reflect direct actions on the fetus and/or the impact of altered placental functions. In the absence of rigorous mechanistic studies, our understanding of how prenatal acetaminophen exposure can cause long-term effects in offspring is limited. The objective of this study was to determine whether acetaminophen can alter key functions of a major placental cell type by utilizing immortalized human first trimester trophoblast cells. This study employed a comparative analysis with the nonsteroidal, anti-inflammatory drug aspirin, which has established effects in first trimester trophoblast cells. We report that immortalized trophoblast cells express the target proteins of acetaminophen and aspirin: cyclooxygenase (COX) -1 and -2. Unlike aspirin, acetaminophen significantly repressed the expression of angiogenesis and vascular remodeling genes in HTR-8/SVneo cells. Moreover, acetaminophen impaired trophoblast invasion by over 80%, while aspirin had no effect on invasion. Acetaminophen exposure reduced the expression of matrix metalloproteinase (MMP)-2 and -9 and increased the expression of tissue inhibitors of matrix metalloproteinases 2, leading to an imbalance in the ratio of proteolytic enzymes. Finally, a bioinformatic approach identified novel acetaminophen-responsive gene networks associated with key trophoblast functions and disease. Together these results suggest that prenatal acetaminophen use may interfere with critical trophoblast functions early in gestation, which may subsequently impact fetal development.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Movimento Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Trofoblastos/efeitos dos fármacos , Linhagem Celular , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/metabolismo
2.
Mol Cell Endocrinol ; 515: 110930, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32610113

RESUMO

Progesterone, a critical hormone in reproduction, is a key sex steroid in the establishment and maintenance of early pregnancy and serves as an intermediary for synthesis of other steroid hormones. Progesterone production from the corpus luteum is a tightly regulated process which is stimulated and maintained by multiple factors, both systemic and local. Multiple regulatory systems, including classic mediators of gonadotropin stimulation such as the cAMP/PKA pathway and TGFß-mediated signaling pathways, as well as local production of hormonal factors, exist to promote granulosa cell function and physiological fine-tuning of progesterone levels. In this manuscript, we provide an updated narrative review of the known mediators of human luteal progesterone and highlight new observations regarding this important process, focusing on studies published within the last five years. We will also review recent evidence suggesting that this complex system of progesterone production is sensitive to disruption by exogenous environmental chemicals that can mimic or interfere with the activities of endogenous hormones.


Assuntos
Corpo Lúteo/metabolismo , Progesterona/metabolismo , Animais , Gonadotropina Coriônica/metabolismo , Feminino , Células da Granulosa/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa