Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878112

RESUMO

Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (DHA-PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses showed that human umbilical vein endothelial cells (HUVECs) subjected to a DHA diet undergo a 6-fold enrichment in DHA-PLs at the plasma membrane (PM) at the expense of monounsaturated oleic acid-containing PLs (OA-PLs). Consequently, DHA-PL enrichment at the PM induces a reduction in cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM lead to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PL levels in membranes affect cell biomechanical properties.


Assuntos
Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Animais , Membrana Celular/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Células Endoteliais/metabolismo , Humanos , Fusão de Membrana , Fosfolipídeos/metabolismo
2.
J Biol Chem ; 298(7): 102136, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714773

RESUMO

Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.


Assuntos
Lipossomos , Proteínas de Neoplasias , Lipídeos , Lipossomos/química , Membranas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Vesículas Transportadoras/metabolismo
3.
J Biol Chem ; 297(2): 100963, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265307

RESUMO

The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid ß peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid ß peptide, several N-terminally truncated fragments of amyloid ß peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid ß peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid ß, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid ß peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid ß. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid ß peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid ß peptide and amyloid ß 42-positive plaques and amyloid ß 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid ß peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.


Assuntos
Doença de Alzheimer , Animais , Encéfalo/metabolismo , Dipeptidil Peptidase 4 , Modelos Animais de Doenças , Humanos , Camundongos , Placa Amiloide
4.
J Cell Sci ; 133(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32327560

RESUMO

Osh6 and Osh7 are lipid transfer proteins (LTPs) that move phosphatidylserine (PS) from the endoplasmic reticulum (ER) to the plasma membrane (PM). High PS levels at the PM are key for many cellular functions. Intriguingly, Osh6 and Osh7 localize to ER-PM contact sites, although they lack membrane-targeting motifs, in contrast to multidomain LTPs that both bridge membranes and convey lipids. We show that Osh6 localization to contact sites depends on its interaction with the cytosolic tail of the ER-PM tether Ist2, a homolog of TMEM16 proteins. We identify a motif in the Ist2 tail, conserved in yeasts, as the Osh6-binding region, and we map an Ist2-binding surface on Osh6. Mutations in the Ist2 tail phenocopy osh6Δ osh7Δ deletion: they decrease cellular PS levels and block PS transport to the PM. Our study unveils an unexpected partnership between a TMEM16-like protein and a soluble LTP, which together mediate lipid transport at contact sites.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Membrana Celular , Retículo Endoplasmático/genética , Fosfatidilserinas , Receptores de Esteroides , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 295(13): 4277-4288, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32075908

RESUMO

ORPphilins are bioactive natural products that strongly and selectively inhibit the growth of some cancer cell lines and are proposed to target intracellular lipid-transfer proteins of the oxysterol-binding protein (OSBP) family. These conserved proteins exchange key lipids, such as cholesterol and phosphatidylinositol 4-phosphate (PI(4)P), between organelle membranes. Among ORPphilins, molecules of the schweinfurthin family interfere with intracellular lipid distribution and metabolism, but their functioning at the molecular level is poorly understood. We report here that cell line sensitivity to schweinfurthin G (SWG) is inversely proportional to cellular OSBP levels. By taking advantage of the intrinsic fluorescence of SWG, we followed its fate in cell cultures and show that its incorporation at the trans-Golgi network depends on cellular abundance of OSBP. Using in vitro membrane reconstitution systems and cellular imaging approaches, we also report that SWG inhibits specifically the lipid transfer activity of OSBP. As a consequence, post-Golgi trafficking, membrane cholesterol levels, and PI(4)P turnover were affected. Finally, using intermolecular FRET analysis, we demonstrate that SWG directly binds to the lipid-binding cavity of OSBP. Collectively these results describe SWG as a specific and intrinsically fluorescent pharmacological tool for dissecting OSBP properties at the cellular and molecular levels. Our findings indicate that SWG binds OSBP with nanomolar affinity, that this binding is sensitive to the membrane environment, and that SWG inhibits the OSBP-catalyzed lipid exchange cycle.


Assuntos
Transporte Biológico/efeitos dos fármacos , Lipídeos/genética , Receptores de Esteroides/metabolismo , Estilbenos/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Fluorescência , Humanos , Lipídeos/química , Ligação Proteica/genética , Transporte Proteico/genética , Receptores de Esteroides/química , Estilbenos/química , Rede trans-Golgi/química , Rede trans-Golgi/genética
6.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
7.
Acta Neuropathol ; 141(6): 823-839, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881611

RESUMO

One of the main components of senile plaques in Alzheimer's disease (AD)-affected brain is the Aß peptide species harboring a pyroglutamate at position three pE3-Aß. Several studies indicated that pE3-Aß is toxic, prone to aggregation and serves as a seed of Aß aggregation. The cyclisation of the glutamate residue is produced by glutaminyl cyclase, the pharmacological and genetic reductions of which significantly alleviate AD-related anatomical lesions and cognitive defects in mice models. The cyclisation of the glutamate in position 3 requires prior removal of the Aß N-terminal aspartyl residue to allow subsequent biotransformation. The enzyme responsible for this rate-limiting catalytic step and its relevance as a putative trigger of AD pathology remained yet to be established. Here, we identify aminopeptidase A as the main exopeptidase involved in the N-terminal truncation of Aß and document its key contribution to AD-related anatomical and behavioral defects. First, we show by mass spectrometry that human recombinant aminopeptidase A (APA) truncates synthetic Aß1-40 to yield Aß2-40. We demonstrate that the pharmacological blockade of APA with its selective inhibitor RB150 restores the density of mature spines and significantly reduced filopodia-like processes in hippocampal organotypic slices cultures virally transduced with the Swedish mutated Aß-precursor protein (ßAPP). Pharmacological reduction of APA activity and lowering of its expression by shRNA affect pE3-42Aß- and Aß1-42-positive plaques and expressions in 3xTg-AD mice brains. Further, we show that both APA inhibitors and shRNA partly alleviate learning and memory deficits observed in 3xTg-AD mice. Importantly, we demonstrate that, concomitantly to the occurrence of pE3-42Aß-positive plaques, APA activity is augmented at early Braak stages in sporadic AD brains. Overall, our data indicate that APA is a key enzyme involved in Aß N-terminal truncation and suggest the potential benefit of targeting this proteolytic activity to interfere with AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Glutamil Aminopeptidase/metabolismo , Animais , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Glutamil Aminopeptidase/antagonistas & inibidores , Glutamil Aminopeptidase/fisiologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
8.
Nature ; 490(7421): 552-5, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23034652

RESUMO

Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/farmacologia , Venenos Elapídicos/farmacologia , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/classificação , Canais Iônicos Sensíveis a Ácido/genética , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Tolerância a Medicamentos , Venenos Elapídicos/administração & dosagem , Venenos Elapídicos/química , Venenos Elapídicos/uso terapêutico , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Morfina/efeitos adversos , Morfina/farmacologia , Naloxona/farmacologia , Nociceptores/química , Nociceptores/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Dor/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Insuficiência Respiratória/induzido quimicamente , Xenopus laevis
9.
N Engl J Med ; 371(24): 2277-2287, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25394321

RESUMO

BACKGROUND: Idiopathic membranous nephropathy is an autoimmune disease. In approximately 70% of patients, it is associated with autoantibodies against the phospholipase A2 receptor 1 (PLA2R1). Antigenic targets in the remaining patients are unknown. METHODS: Using Western blotting, we screened serum samples from patients with idiopathic membranous nephropathy, patients with other glomerular diseases, and healthy controls for antibodies against human native glomerular proteins. We partially purified a putative new antigen, identified this protein by means of mass spectrometry of digested peptides, and validated the results by analysis of recombinant protein expression, immunoprecipitation, and immunohistochemical analysis. RESULTS: Serum samples from 6 of 44 patients in a European cohort and 9 of 110 patients in a Boston cohort with anti-PLA2R1-negative idiopathic membranous nephropathy recognized a glomerular protein that was 250 kD in size. None of the serum samples from the 74 patients with idiopathic membranous nephropathy who were seropositive for anti-PLA2R1 antibodies, from the 76 patients with other glomerular diseases, and from the 44 healthy controls reacted against this antigen. Although this newly identified antigen is clearly different from PLA2R1, it shares some biochemical features, such as N-glycosylation, membranous location, and reactivity with serum only under nonreducing conditions. Mass spectrometry identified this antigen as thrombospondin type-1 domain-containing 7A (THSD7A). All reactive serum samples recognized recombinant THSD7A and immunoprecipitated THSD7A from glomerular lysates. Moreover, immunohistochemical analyses of biopsy samples from patients revealed localization of THSD7A to podocytes, and IgG eluted from one of these samples was specific for THSD7A. CONCLUSIONS: In our cohort, 15 of 154 patients with idiopathic membranous nephropathy had circulating autoantibodies to THSD7A but not to PLA2R1, a finding that suggests a distinct subgroup of patients with this condition. (Funded by the French National Center for Scientific Research and others.).


Assuntos
Autoanticorpos/sangue , Glomerulonefrite Membranosa/imunologia , Receptores da Fosfolipase A2/imunologia , Trombospondinas/imunologia , Western Blotting , Estudos de Casos e Controles , Glomerulonefrite Membranosa/sangue , Humanos , Glomérulos Renais/metabolismo , Receptores da Fosfolipase A2/sangue , Receptores da Fosfolipase A2/metabolismo , Trombospondinas/sangue , Trombospondinas/metabolismo
10.
J Org Chem ; 81(22): 10733-10741, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27723328

RESUMO

We report the synthesis and site-specific incorporation in oligodeoxynucleotides (ODNs) of an emissive deoxyuridine analog electronically conjugated on its C5-position with a 3-methoxychromone moiety acting as a fluorophore. When incorporated in ODNs, this fluorescent deoxyuridine analog exhibits remarkable photostability and good quantum yields. This deoxyuridine analog also displays a mega-Stokes shift, which allows for its use as an efficient donor for FRET-based studies when paired with the yellow emissive indocarbocyanine Cy3 acceptor.

11.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991810

RESUMO

Oxysterol binding protein (OSBP) extracts cholesterol from the ER to deliver it to the TGN via counter exchange and subsequent hydrolysis of the phosphoinositide PI(4)P. Here, we show that this pathway is essential in polarized epithelial cells where it contributes not only to the proper subcellular distribution of cholesterol but also to the trans-Golgi sorting and trafficking of numerous plasma membrane cargo proteins with apical or basolateral localization. Reducing the expression of OSBP, blocking its activity, or inhibiting a PI4Kinase that fuels OSBP with PI(4)P abolishes the epithelial phenotype. Waves of cargo enrichment in the TGN in phase with OSBP and PI(4)P dynamics suggest that OSBP promotes the formation of lipid gradients along the TGN, which helps cargo sorting. During their transient passage through the trans-Golgi, polarized plasma membrane proteins get close to OSBP but fail to be sorted when OSBP is silenced. Thus, OSBP lipid exchange activity is decisive for polarized cargo sorting and distribution in epithelial cells.


Assuntos
Colesterol , Retículo Endoplasmático , Células Epiteliais , Complexo de Golgi , Receptores de Esteroides , Movimento Celular , Colesterol/metabolismo , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Humanos , Animais , Cães , Células A549 , Células Madin Darby de Rim Canino , Retículo Endoplasmático/metabolismo , Receptores de Esteroides/metabolismo
12.
Pain ; 165(2): 470-486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733484

RESUMO

ABSTRACT: Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.


Assuntos
Síndrome Metabólica , Estado Pré-Diabético , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gânglios Espinais/metabolismo , Lipídeos , Síndrome Metabólica/metabolismo , Obesidade , Dor , Estado Pré-Diabético/metabolismo , Células Receptoras Sensoriais/metabolismo
13.
Dev Cell ; 58(2): 121-138.e9, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693319

RESUMO

Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.


Assuntos
Proteínas de Membrana , Proteínas de Transporte Vesicular , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/metabolismo , Lipídeos/química
14.
Cancer Res ; 83(15): 2461-2470, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272750

RESUMO

Dependency on mitochondrial oxidative phosphorylation (OxPhos) is a potential weakness for leukemic stem cells (LSC) that can be exploited for therapeutic purposes. Fatty acid oxidation (FAO) is a crucial OxPhos-fueling catabolic pathway for some acute myeloid leukemia (AML) cells, particularly chemotherapy-resistant AML cells. Here, we identified cold sensitivity at 4°C (cold killing challenge; CKC4), commonly used for sample storage, as a novel vulnerability that selectively kills AML LSCs with active FAO-supported OxPhos while sparing normal hematopoietic stem cells. Cell death of OxPhos-positive leukemic cells was induced by membrane permeabilization at 4°C; by sharp contrast, leukemic cells relying on glycolysis were resistant. Forcing glycolytic cells to activate OxPhos metabolism sensitized them to CKC4. Lipidomic and proteomic analyses showed that OxPhos shapes the composition of the plasma membrane and introduces variation of 22 lipid subfamilies between cold-sensitive and cold-resistant cells. Together, these findings indicate that steady-state energy metabolism at body temperature predetermines the sensitivity of AML LSCs to cold temperature, suggesting that cold sensitivity could be a potential OxPhos biomarker. These results could have important implications for designing experiments for AML research to avoid cell storage at 4°C. SIGNIFICANCE: Mitochondrial metabolism fueled by FAO alters the membrane composition and introduces membrane fragility upon cold exposure in OxPhos-driven AML and in LSCs. See related commentary by Jones, p. 2441.


Assuntos
Leucemia Mieloide Aguda , Fosforilação Oxidativa , Humanos , Temperatura Baixa , Proteômica , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Hematopoéticas/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/metabolismo
15.
Data Brief ; 42: 108151, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35516005

RESUMO

During brain development, synapses undergo structural rearrangements and functional changes mediated by many molecular processes including post-translational modifications by the Small Ubiquitin-like MOdifier (SUMO). To get an overview of the endogenous SUMO-modified proteins in the developing rat brain synapses, our first aim was to characterize the synaptic proteome from rat at 14 postnatal days (PND14), a period that combines intense synaptogenesis, neurotransmission and high levels of SUMO2/3-ylation. In this purpose, we isolated the synaptosomal fraction by differential centrifugation on sucrose percoll gradient and characterized the synaptosomal proteome by nanoLC-MS/MS. Our second aim was to provide a comprehensive list of the SUMO2/3-modified protein in this compartment. We thus performed an enrichment in SUMO2/3-ylated proteins from the synaptosomal fraction by denaturing immunoprecipitation using specific anti-SUMO2/3 antibodies prior to proteomics analysis. The information presented in this article complement the publication "Proteomic Identification of an Endogenous Synaptic SUMOylome in the Developing Rat Brain" [1], by focusing on the characterization of the synaptic proteome of PND14 rat brain. Altogether, these data can inform future experiments focused on studying the functional consequences of synaptic SUMOylation regarding synapses structure and function. In addition, they can provide the basis for future mechanistic studies investigating brain pathologies involving altered SUMOylation levels.

16.
Front Mol Biosci ; 9: 954087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237573

RESUMO

Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull- down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target-specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.

17.
J Invest Dermatol ; 142(2): 425-434, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34310951

RESUMO

The potential role of CLEC12B, a gene predominantly expressed by skin melanocytes discovered through transcriptomic analysis, in melanoma is unknown. In this study, we show that CLEC12B expression is lower in melanoma and melanoma metastases than in melanocytes and benign melanocytic lesions and that its decrease correlates with poor prognosis. We further show that CLEC12B recruits SHP2 phosphatase through its immunoreceptor tyrosine-based inhibition motif domain, inactivates signal transducer and activator of transcription 1/3/5, increases p53/p21/p27 expression/activity, and modulates melanoma cell proliferation. The growth of human melanoma cells overexpressing CLEC12B in nude mice after subcutaneous injection is significantly decreased compared with that in the vehicle control group and is associated with decreased signal transducer and activator of transcription 3 phosphorylation and increased p53 levels in the tumors. Reducing the level of CLEC12B had the opposite effect. We show that CLEC12B represses the activation of the signal transducer and activator of transcription pathway and negatively regulates the cell cycle, providing a proliferative asset to melanoma cells.


Assuntos
Lectinas Tipo C/metabolismo , Melanoma/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores Mitogênicos/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Conjuntos de Dados como Assunto , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/mortalidade , Melanoma/patologia , Camundongos , RNA-Seq , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Invest Dermatol ; 142(7): 1858-1868.e8, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34896119

RESUMO

Pigmentation of the human skin is a complex process regulated by many genes. However, only a few have a profound impact on melanogenesis. Transcriptome analysis of pigmented skin compared with analysis of vitiligo skin devoid of melanocytes allowed us to unravel CLEC12B as a melanocytic gene. We showed that CLEC12B, a C-type lectin receptor, is highly expressed in melanocytes and that its expression is decreased in dark skin compared with that in white skin. CLEC12B directly recruits and activates SHP1 and SHP2 through its immunoreceptor tyrosine-based inhibitory motif domain and promotes CRE-binding protein degradation, leading to the downregulation of the downstream MITF pathway. CLEC12B ultimately controls melanin production and pigmentation in vitro and in a model of reconstructed human epidermis. The identification of CLEC12B in melanocytes shows that C-type lectin receptors exert function beyond immunity and inflammation. It also provides insights into the understanding of melanocyte biology and regulation of melanogenesis.


Assuntos
Lectinas Tipo C , Melanócitos , Receptores Mitogênicos , Pigmentação da Pele , Epiderme/metabolismo , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Receptores Mitogênicos/metabolismo , Pele/metabolismo , Pigmentação da Pele/genética
19.
Front Mol Neurosci ; 14: 780535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887727

RESUMO

Synapses are highly specialized structures that interconnect neurons to form functional networks dedicated to neuronal communication. During brain development, synapses undergo activity-dependent rearrangements leading to both structural and functional changes. Many molecular processes are involved in this regulation, including post-translational modifications by the Small Ubiquitin-like MOdifier SUMO. To get a wider view of the panel of endogenous synaptic SUMO-modified proteins in the mammalian brain, we combined subcellular fractionation of rat brains at the post-natal day 14 with denaturing immunoprecipitation using SUMO2/3 antibodies and tandem mass spectrometry analysis. Our screening identified 803 candidate SUMO2/3 targets, which represents about 18% of the synaptic proteome. Our dataset includes neurotransmitter receptors, transporters, adhesion molecules, scaffolding proteins as well as vesicular trafficking and cytoskeleton-associated proteins, defining SUMO2/3 as a central regulator of the synaptic organization and function.

20.
Cell Death Differ ; 28(6): 1837-1848, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33462405

RESUMO

Ubiquitination by serving as a major degradation signal of proteins, but also by controlling protein functioning and localization, plays critical roles in most key cellular processes. Here, we show that MITF, the master transcription factor in melanocytes, controls ubiquitination in melanoma cells. We identified FBXO32, a component of the SCF E3 ligase complex as a new MITF target gene. FBXO32 favors melanoma cell migration, proliferation, and tumor development in vivo. Transcriptomic analysis shows that FBXO32 knockdown induces a global change in melanoma gene expression profile. These include the inhibition of CDK6 in agreement with an inhibition of cell proliferation and invasion upon FBXO32 silencing. Furthermore, proteomic analysis identifies SMARC4, a component of the chromatin remodeling complexes BAF/PBAF, as a FBXO32 partner. FBXO32 and SMARCA4 co-localize at loci regulated by FBXO32, such as CDK6 suggesting that FBXO32 controls transcription through the regulation of chromatin remodeling complex activity. FBXO32 and SMARCA4 are the components of a molecular cascade, linking MITF to epigenetics, in melanoma cells.


Assuntos
Reprogramação Celular/genética , Epigênese Genética/genética , Melanoma/genética , Proteínas Musculares/metabolismo , Proteômica/métodos , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/patologia , Camundongos , Camundongos Nus , Transfecção , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa