Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107475, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879008

RESUMO

Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.

2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937700

RESUMO

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/ultraestrutura , Synechocystis/química , Proteínas de Bactérias/metabolismo , Conformação Proteica
3.
J Biol Chem ; 298(1): 101424, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801554

RESUMO

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Synechococcus , Clorofila/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/metabolismo , Água/metabolismo
4.
Photosynth Res ; 156(3): 309-314, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36653579

RESUMO

The residue D1-D170 bridges Mn4 with the Ca ion in the O2-evolving Mn4CaO5 cluster of Photosystem II. Recently, the D1-D170E mutation was shown to substantially alter the Sn+1-minus-Sn FTIR difference spectra [Debus RJ (2021) Biochemistry 60:3841-3855]. The mutation was proposed to alter the equilibrium between different Jahn-Teller conformers of the S1 state such that (i) a different S1 state conformer is stabilized in D1-D170E than in wild-type and (ii) the S1 to S2 transition in D1-D170E produces a high-spin form of the S2 state rather than the low-spin form that is produced in wild-type. In this study, we employed EPR spectroscopy to test if a high-spin form of the S2 state is formed preferentially in D1-D170E PSII. Our data show that illumination of dark-adapted D1-D170E PSII core complexes does indeed produce a high-spin form of the S2 state rather than the low-spin multiline form that is produced in wild-type. This observation provides further experimental support for a change in the equilibrium between S state conformers in both the S1 and S2 states in a site-directed mutant that retains substantial O2 evolving activity.


Assuntos
Manganês , Complexo de Proteína do Fotossistema II , Complexo de Proteína do Fotossistema II/metabolismo , Ligantes , Manganês/química , Mutação , Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química , Oxirredução
5.
Biochemistry ; 60(51): 3841-3855, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34898175

RESUMO

The O2-evolving Mn4Ca cluster in photosystem II (PSII) is arranged as a distorted Mn3Ca cube that is linked to a fourth Mn ion (denoted as Mn4) by two oxo bridges. The Mn4 and Ca ions are bridged by residue D1-D170. This is also the only residue known to participate in the high-affinity Mn(II) site that participates in the light-driven assembly of the Mn4Ca cluster. In this study, we use Fourier transform infrared difference spectroscopy to characterize the impact of the D1-D170E mutation. On the basis of analyses of carboxylate and carbonyl stretching modes and the O-H stretching modes of hydrogen-bonded water molecules, we show that this mutation alters the extensive network of hydrogen bonds that surrounds the Mn4Ca cluster in the same manner as that of many other mutations. It also alters the equilibrium between conformers of the Mn4Ca cluster in the dark-stable S1 state so that a high-spin form of the S2 state is produced during the S1-to-S2 transition instead of the low-spin form that gives rise to the S2 state multiline electron paramagnetic resonance signal. The mutation may also change the coordination mode of the carboxylate group at position 170 to unidentate ligation of Mn4. This is the first mutation of a metal ligand in PSII that substantially impacts the spectroscopic signatures of the Mn4Ca cluster without substantially eliminating O2 evolution. The results have significant implications for our understanding of the roles of alternate active/inactive conformers of the Mn4Ca cluster in the mechanism of O2 formation.


Assuntos
Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cálcio/química , Ácidos Carboxílicos/química , Ligação de Hidrogênio , Ligantes , Compostos de Manganês/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo
6.
Biochemistry ; 59(40): 3902-3917, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32931699

RESUMO

During the catalytic step that precedes O-O bond formation in Photosystem II, a water molecule deprotonates and moves next to the water-splitting Mn4Ca cluster's O5 oxo bridge. The relocated oxygen, known as O6 or Ox, may serve as a substrate, combining with O5 to form O2 during the final step in the catalytic cycle, or may be positioned to become a substrate during the next catalytic cycle. Recent serial femtosecond X-ray crystallographic studies show that the flexibility of D1-E189 plays a critical role in facilitating the relocation of O6/Ox. In this study, the D1-E189G and D1-E189S mutations were characterized with FTIR difference spectroscopy. The data show that both mutations support Mn4Ca cluster assembly, substantially inhibit advancement beyond the S2 state, and alter the network of H bonds that surrounds the Mn4Ca cluster. Previously, the D1-E189Q, D1-E189K, and D1-E189R mutations were shown to have little impact on the activity, electron transfer rates, or spectral properties of Photosystem II. A rationale for this behavior is presented. The residue D1-E329 interacts with water molecules in the O1 water network that has been suggested recently to supply substrate during the catalytic cycle. Characterization of the D1-E329A mutant with FTIR difference spectroscopy shows that this mutation does not substantially perturb the structure of PSII or the water molecules whose O-H stretching modes change during the catalytic cycle. This result provides additional evidence that the water molecules whose vibrational properties change during the S1 to S2 transition are confined approximately to the region bounded by D1-N87, D1-N298, and D2-K317.


Assuntos
Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Manganês/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Mutação Puntual , Synechocystis/química , Synechocystis/genética , Água/metabolismo
7.
Biochemistry ; 59(51): 4864-4872, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33319991

RESUMO

The S3 state is the last semi-stable state in the water splitting reaction that is catalyzed by the Mn4O5Ca cluster that makes up the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent high-field/frequency (95 GHz) electron paramagnetic resonance (EPR) studies of PSII isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus have found broadened signals induced by chemical modification of the S3 state. These signals are ascribed to an S3 form that contains a five-coordinate MnIV center bridged to a cuboidal MnIV3O4Ca unit. High-resolution X-ray free-electron laser studies of the S3 state have observed the OEC with all-octahedrally coordinated MnIV in what is described as an open cuboid-like cluster. No five-coordinate MnIV centers have been reported in these S3 state structures. Here, we report high-field/frequency (130 GHz) pulse EPR of the S3 state in Synechocystis sp. PCC 6803 PSII as isolated in the presence of glycerol. The S3 state of PSII from Synechocystis exhibits multiple broadened forms (≈69% of the total signal) similar to those seen in the chemically modified S3 centers from T. elongatus. Field-dependent ELDOR-detected nuclear magnetic resonance resolves two classes of 55Mn nuclear spin transitions: one class with small hyperfine couplings (|A| ≈ 1-7 MHz) and another with larger hyperfine couplings (|A| ≈ 100 MHz). These results are consistent with an all-MnIV4 open cubane structure of the S3 state and suggest that the broadened S3 signals arise from a perturbation of Mn4A and/or Mn3B, possibly induced by the presence of glycerol in the as-isolated Synechocystis PSII.


Assuntos
Complexo de Proteína do Fotossistema II/química , Synechocystis/enzimologia , Crioprotetores/química , Espectroscopia de Ressonância de Spin Eletrônica , Glicerol/química , Manganês/química , Oxirredução , Oxigênio/química
8.
Biochemistry ; 58(29): 3185-3192, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31276397

RESUMO

During the catalytic step immediately prior to O-O bond formation in Photosystem II, a water molecule deprotonates and moves next to the water-splitting Mn4CaO5 cluster's O5 oxo bridge. Considerable evidence identifies O5 as one of the two substrate waters that ultimately form O2. The relocated oxygen, known as O6 or Ox, may be the second. It is currently debated whether O6 or Ox originates as the Mn-bound water denoted W2 or as the Ca2+-bound water denoted W3. To distinguish between these two possibilities, we analyzed the D-O-D bending mode of the water molecule that deprotonates/relocates to become O6/Ox. We show that this D-O-D bending mode is not altered by the D1-S169A mutation. Previously, we showed that this D-O-D bending mode is altered substantially when Sr2+ is substituted for Ca2+. Because Sr2+/Ca2+ substitution alters this D-O-D bending mode but the D1-S169A mutation does not, we conclude that the water-derived oxygen that relocates and becomes O6/Ox derives from the Ca2+-bound W3. This conclusion provides an important constraint for proposed mechanisms of O-O bond formation in Photosystem II.


Assuntos
Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Água/metabolismo , Cálcio/química , Cálcio/metabolismo , Manganês/química , Manganês/metabolismo , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Especificidade por Substrato/fisiologia , Synechocystis/química , Água/química
9.
Biochemistry ; 58(10): 1379-1387, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30707571

RESUMO

In photosystem II (PSII), photosynthetic water oxidation occurs at the tetramanganese-calcium cluster that cycles through light-induced intermediates (S0-S4) to produce oxygen from two substrate waters. The surrounding hydrogen-bonded amino acid residues and waters form channels that facilitate proton transfer and substrate water delivery, thereby ensuring efficient water oxidation. The residue D1-S169 lies in the "narrow" channel and forms hydrogen bonds with the Mn4CaO5 cluster via waters W1 and Wx. To probe the role of the narrow channel in substrate-water binding, we studied the D1-S169A mutation. PSII core complexes isolated from mutant cells exhibit inefficient S-state cycling and delayed oxygen evolution. The S2-state multiline EPR spectrum of D1-S169A PSII core complexes differed significantly from that of wild-type, and FTIR difference spectra showed that the mutation strongly perturbs the extensive network of hydrogen bonds that extends at least from D1-Y161 (YZ) to D1-D61. These results imply a possible role of D1-S169 in proton egress or substrate water delivery.


Assuntos
Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Aminoácidos/metabolismo , Cálcio/metabolismo , Ligação de Hidrogênio , Manganês/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema II/fisiologia , Prótons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química
10.
J Biol Chem ; 293(7): 2487-2497, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29263091

RESUMO

Photoinduced water oxidation at the O2-evolving complex (OEC) of photosystem II (PSII) is a complex process involving a tetramanganese-calcium cluster that is surrounded by a hydrogen-bonded network of water molecules, chloride ions, and amino acid residues. Although the structure of the OEC has remained conserved over eons of evolution, significant differences in the chloride-binding characteristics exist between cyanobacteria and higher plants. An analysis of amino acid residues in and around the OEC has identified residue 87 in the D1 subunit as the only significant difference between PSII in cyanobacteria and higher plants. We substituted the D1-Asn87 residue in the cyanobacterium Synechocystis sp. PCC 6803 (wildtype) with alanine, present in higher plants, or with aspartic acid. We studied PSII core complexes purified from D1-N87A and D1-N87D variant strains to probe the function of the D1-Asn87 residue in the water-oxidation mechanism. EPR spectra of the S2 state and flash-induced FTIR spectra of both D1-N87A and D1-N87D PSII core complexes exhibited characteristics similar to those of wildtype Synechocystis PSII core complexes. However, flash-induced O2-evolution studies revealed a decreased cycling efficiency of the D1-N87D variant, whereas the cycling efficiency of the D1-N87A PSII variant was similar to that of wildtype PSII. Steady-state O2-evolution activity assays revealed that substitution of the D1 residue at position 87 with alanine perturbs the chloride-binding site in the proton-exit channel. These findings provide new insight into the role of the D1-Asn87 site in the water-oxidation mechanism and explain the difference in the chloride-binding properties of cyanobacterial and higher-plant PSII.


Assuntos
Proteínas de Bactérias/genética , Cloretos/metabolismo , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Spinacia oleracea/metabolismo , Synechocystis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cloretos/química , Cristalografia por Raios X , Mutação de Sentido Incorreto , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Spinacia oleracea/química , Spinacia oleracea/genética , Synechocystis/química , Synechocystis/metabolismo
11.
Biochemistry ; 57(29): 4299-4311, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29944346

RESUMO

The oxidations of the O2-evolving Mn4CaO5 cluster in Photosystem II are coupled to the release of protons to the thylakoid lumen via one or more proton egress pathways. These pathways are comprised of extensive networks of hydrogen-bonded water molecules and amino acid side chains. The hydrophobic residue, D1-V185, is adjacent to numerous water molecules in one of these pathways. The D1-V185N mutation dramatically slows O-O bond formation. This impairment has been attributed to a disruption of the hydrogen-bonded water molecules that are crucial for proton egress or whose rearrangement is required for catalysis. In this study, Fourier transform infrared spectroscopy was employed to characterize the impact of the D1-V185N mutation on the carboxylate groups and water molecules that form a network of hydrogen bonds in this putative proton egress pathway. By analyzing carboxylate stretching modes, carbonyl stretching modes of hydrogen-bonded carboxylic acids, O-H stretching modes of hydrogen-bonded water molecules, and D-O-D bending modes, we obtain evidence that the D1-V185N mutation perturbs the extensive network of hydrogen bonds that extends from YZ to D1-D61 to a greater extent than any mutation yet examined but does not alter the water molecules that interact directly with D1-D61. The mutation also alters the environments of the carboxylate groups whose p Ka values change in response to the S1 to S2 and S2 to S3 transitions. Finally, the mutation alters the environment of the water molecule whose bending mode vanishes during the S2 to S3 transition, consistent with assigning the Ca2+-bound W3 as the water molecule that deprotonates and joins oxo bridge O5 during the S2 to S3 transition, possibly as the second substrate water molecule for O2 formation.


Assuntos
Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Água/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Ligação de Hidrogênio , Manganês/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Synechocystis/química , Synechocystis/citologia , Tilacoides/química , Tilacoides/metabolismo
12.
Biochemistry ; 56(20): 2558-2570, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28474518

RESUMO

The O2-producing Mn4CaO5 catalyst in photosystem II oxidizes two water molecules (substrate) to produce one O2 molecule. Considerable evidence supports the identification of one of the two substrate waters as the Mn4CaO5 cluster's oxo bridge known as O5. The identity of the second substrate water molecule is less clear. In one set of models, the second substrate is the Mn-bound water molecule known as W2. In another set of models, the second substrate is the Ca2+-bound water molecule known as W3. In all of these models, a deprotonated form of the second substrate moves to a position next to O5 during the catalytic step immediately prior to O-O bond formation. In this study, FTIR difference spectroscopy was employed to identify the vibrational modes of hydrogen-bonded water molecules that are altered by the substitution of Sr2+ for Ca2+. Our data show that the substitution substantially altered the vibrational modes of only a single water molecule: the water molecule whose D-O-D bending mode is eliminated during the catalytic step immediately prior to O-O bond formation. These data are most consistent with the identification of the Ca2+-bound W3 as the second substrate involved in O-O bond formation.


Assuntos
Cálcio/química , Manganês/química , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Catálise , Ligação de Hidrogênio , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química
13.
Biochemistry ; 55(31): 4432-6, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27433995

RESUMO

Ammonia binds to two sites in the oxygen-evolving complex (OEC) of Photosystem II (PSII). The first is as a terminal ligand to Mn in the S2 state, and the second is at a site outside the OEC that is competitive with chloride. Binding of ammonia in this latter secondary site results in the S2 state S = (5)/2 spin isomer being favored over the S = (1)/2 spin isomer. Using electron paramagnetic resonance spectroscopy, we find that ammonia binds to the secondary site in wild-type Synechocystis sp. PCC 6803 PSII, but not in D2-K317A mutated PSII that does not bind chloride. By combining these results with quantum mechanics/molecular mechanics calculations, we propose that ammonia binds in the secondary site in competition with D1-D61 as a hydrogen bond acceptor to the OEC terminal water ligand, W1. Implications for the mechanism of ammonia binding via its primary site directly to Mn4 in the OEC are discussed.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cloretos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética , Synechocystis/metabolismo
14.
Biochim Biophys Acta ; 1847(1): 19-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25038513

RESUMO

The photosynthetic conversion of water to molecular oxygen is catalyzed by the Mn4CaO5 cluster in Photosystem II and provides nearly our entire supply of atmospheric oxygen. The Mn4CaO5 cluster accumulates oxidizing equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes two molecules of water to oxygen. The Mn4CaO5 cluster converts water to oxygen much more efficiently than any synthetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions associated with water oxidation and by careful management of substrate (water) access and proton egress. This review describes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton egress pathways that link the Mn4CaO5 cluster with the thylakoid lumen, and to characterize the influence of specific residues on the water molecules that serve as substrate or as participants in the networks of hydrogen bonds that make up the water access and proton egress pathways. This information will improve our understanding of water oxidation by the Mn4CaO5 catalyst in Photosystem II and will provide insight into the design of new generations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.


Assuntos
Compostos de Cálcio/química , Compostos de Manganês/química , Complexo de Proteína do Fotossistema II/química , Água/química , Compostos de Cálcio/metabolismo , Domínio Catalítico , Ligação de Hidrogênio , Ligantes , Compostos de Manganês/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/metabolismo
15.
Biochemistry ; 54(8): 1663-72, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25680072

RESUMO

Efficient proton removal from the oxygen-evolving complex (OEC) of photosystem II (PSII) and activation of substrate water molecules are some of the key aspects optimized in the OEC for high turnover rates. The hydrogen-bonding network around the OEC is critical for efficient proton transfer and for tuning the position and pKa values of the substrate water/hydroxo/oxo molecules. The D1-N181 residue is part of the hydrogen-bonding network on the active face of the OEC. D1-N181 is also associated with the chloride ion in the D2-K317 site and is one of the residues closest to a putative substrate water molecule bound as a terminal ligand to Mn4. We studied the effect of the D1-N181A and D1-N181S mutations on the water oxidation chemistry at the OEC. PSII core complexes isolated from the D1-N181A and D1-N181S mutants have steady-state O2 evolution rates lower than those of wild-type PSII core complexes. Fourier transform infrared spectroscopy indicates slight perturbations of the hydrogen-bonding network in D1-N181A and D1-N181S PSII core complexes, similar to the effects of some other mutations in the same region, but to a lesser extent. Unlike in wild-type PSII core complexes, a g=4 signal was observed in the S2-state EPR spectra of D1-N181A and D1-N181S PSII core complexes in addition to the normal g=2 multiline signal. The S-state cycling of D1-N181A and D1-N181S PSII core complexes was similar to that of wild-type PSII core complexes, whereas the O2-release kinetics of D1-N181A and D1-N181S PSII core complexes were much slower than the O2-release kinetics of wild-type PSII core complexes. On the basis of these results, we conclude that proton transfer is not compromised in the D1-N181A and D1-N181S mutants but that the O-O bond formation step is retarded in these mutants.


Assuntos
Substituição de Aminoácidos , Asparagina/química , Mutação de Sentido Incorreto , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Synechocystis/enzimologia , Asparagina/genética , Asparagina/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/genética
16.
J Am Chem Soc ; 137(27): 8829-37, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26083545

RESUMO

High-resolution X-ray structures of photosystem II reveal several potential substrate binding sites at the water-oxidizing/oxygen-evolving 4MnCa cluster. Aspartate-61 of the D1 protein hydrogen bonds with one such water (W1), which is bound to the dangler Mn4A of the oxygen-evolving complex. Comparison of pulse EPR spectra of (14)NH3 and (15)NH3 bound to wild-type Synechocystis PSII and a D1-D61A mutant lacking this hydrogen-bonding interaction demonstrates that ammonia binds as a terminal NH3 at this dangler Mn4A site and not as a partially deprotonated bridge between two metal centers. The implications of this finding on identifying the binding sites of the substrate and the subsequent mechanism of dioxygen formation are discussed.


Assuntos
Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Manganês/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Conformação Proteica , Synechocystis/química
17.
Biochemistry ; 53(18): 2941-55, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24730551

RESUMO

Understanding the mechanism of photosynthetic water oxidation requires characterizing the reactions of the water molecules that serve as substrate or that otherwise interact with the oxygen-evolving Mn4CaO5 cluster. FTIR difference spectroscopy is a powerful tool for studying the structural changes of hydrogen bonded water molecules. For example, the O-H stretching mode of water molecules having relatively weak hydrogen bonds can be monitored near 3600 cm(-1), the D-O-D bending mode can be monitored near 1210 cm(-1), and highly polarizable networks of hydrogen bonds can be monitored as broad features between 3000 and 2000 cm(-1). The two former regions are practically devoid of overlapping vibrational modes from the protein. In Photosystem II, water oxidation requires a precisely choreographed sequence of proton and electron transfer steps in which proton release is required to prevent the redox potential of the Mn4CaO5 cluster from rising to levels that would prevent its subsequent oxidation. Proton release takes place via one or more proton egress pathways leading from the Mn4CaO5 cluster to the thylakoid lumen. There is growing evidence that D1-D61 is the initial residue of one dominant proton egress pathway. This residue interacts directly with water molecules in the first and second coordination spheres of the Mn4CaO5 cluster. In this study, we explore the influence of D1-D61 on the water reactions accompanying oxygen production by characterizing the FTIR properties of the D1-D61A mutant of the cyanobacterium, Synechocystis sp. PCC 6803. On the basis of mutation-induced changes to the carbonyl stretching region near 1747 cm(-1), we conclude that D1-D61 participates in the same extensive networks of hydrogen bonds that have been identified previously by FTIR studies. On the basis of mutation-induced changes to the weakly hydrogen-bonded O-H stretching region, we conclude that D1-D61 interacts with water molecules that are located near the Cl(-)(1) ion and that deprotonate or participate in stronger hydrogen bonds as a result of the S1 to S2 and S2 to S3 transitions. On the basis of the elimination of a broad feature between 3100 and 2600 cm(-1), we conclude that the highly polarizable network of hydrogen bonds whose polarizability or protonation state increases during the S1 to S2 transition involves D1-D61. On the basis of the elimination of features in the D-O-D bending region, we conclude that D1-D61 forms a hydrogen bond to one of the H2O molecules whose H-O-H bending mode changes in response to the S1 to S2 transition. The elimination of this H2O molecule in the D1-D61A mutant provides one rationale for the decreased efficiency of water oxidation in this mutant. Finally, we discuss reasons why the recent conclusion that a substrate-containing cluster of five water molecules accepts a proton from the Mn4CaO5 cluster during the S1 to S2 transition and deprotonates during subsequent S state transitions should be reassessed.


Assuntos
Cálcio/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Água/metabolismo , Cálcio/química , Domínio Catalítico , Ligação de Hidrogênio , Manganês/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Synechocystis/genética , Synechocystis/metabolismo
18.
Biochemistry ; 53(6): 1001-17, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24460511

RESUMO

We previously provided experimental evidence that an extensive network of hydrogen bonds exists near the oxygen-evolving Mn4CaO5 cluster in photosystem II and that elements of this network form part of a dominant proton-egress pathway leading from the Mn4CaO5 cluster to the thylakoid lumen. The evidence was based on (i) the elimination of the same ν(C═O) mode of a protonated carboxylate group in the S2-minus-S1 FTIR difference spectrum of wild-type PSII core complexes from the cyanobacterium Synechocystis sp. PCC 6803 by the mutations D1-E65A, D2-E312A, and D1-E329Q and (ii) the substantial decrease in the efficiency of the S3 to S0 transition caused by the mutations D1-D61A, D1-E65A, and D2-E312A. The eliminated ν(C═O) mode corresponds to an unidentified carboxylate group whose pKa value decreases in response to the increased charge that develops on the Mn4CaO5 cluster during the S1 to S2 transition. In the current study, we have extended our work to include the ν(C═O) regions of other Sn+1-minus-Sn FTIR difference spectra and to additional mutations of residues inferred to participate in networks of hydrogen bonds near the Mn4CaO5 cluster or leading from the Mn4CaO5 cluster to the thylakoid lumen. Our data suggest that a different carboxylate group has its pKa value increased during the S2 to S3 transition and that a third carboxylate group experiences a change in its environment during the S0 to S1 transition. The pKa values that shift during the S1 to S2 and S2 to S3 transitions appear to be restored during the S3 to S0 transition. The D1-R334A mutation decreases or eliminates the same ν(C═O) modes from the S2-minus-S1 and S3-minus-S2 spectra as mutations D1-E65A, D2-E312A, and D1-E329Q and substantially decreases the efficiency of the S3 to S0 transition. We conclude that D1-R334 participates in the same dominant proton-egress pathway that was identified in our previous study. The D1-Q165E mutation leaves the ν(C═O) region of the S2-minus-S1 FTIR difference spectrum intact, but it eliminates a mode from this region of the S3-minus-S2 spectrum. We conclude that D1-Q165 participates in an extensive network of hydrogen bonds that that extends across the Mn4CaO5 cluster to the D1-E65/D2-E312 dyad and that includes D1-E329 and several water molecules including the W2 and W3 water ligands of the Mn4CaO5 cluster's dangling MnA4 and Ca ions, respectively. The D2-E307Q, D2-D308N, D2-E310Q, and D2-E323Q mutations alter the ν(C═O) regions of none of the FTIR difference spectra. We conclude that these four residues are located far from the three unidentified carboxylate groups that give rise to the ν(C═O) features observed in the FTIR difference spectra.


Assuntos
Cálcio/química , Manganês/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ácidos Carboxílicos/química , Ligação de Hidrogênio , Complexo de Proteína do Fotossistema II/genética , Espectroscopia de Infravermelho com Transformada de Fourier
19.
20.
J Phys Chem B ; 128(16): 3870-3884, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38602496

RESUMO

The O2-evolving Mn4CaO5 cluster in photosystem II is ligated by six carboxylate residues. One of these is D170 of the D1 subunit. This carboxylate bridges between one Mn ion (Mn4) and the Ca ion. A second carboxylate ligand is D342 of the D1 subunit. This carboxylate bridges between two Mn ions (Mn1 and Mn2). D170 and D342 are located on opposite sides of the Mn4CaO5 cluster. Recently, it was shown that the D170E mutation perturbs both the intricate networks of H-bonds that surround the Mn4CaO5 cluster and the equilibrium between different conformers of the cluster in two of its lower oxidation states, S1 and S2, while still supporting O2 evolution at approximately 50% the rate of the wild type. In this study, we show that the D342E mutation produces much the same alterations to the cluster's FTIR and EPR spectra as D170E, while still supporting O2 evolution at approximately 20% the rate of the wild type. Furthermore, the double mutation, D170E + D342E, behaves similarly to the two single mutations. We conclude that D342E alters the equilibrium between different conformers of the cluster in its S1 and S2 states in the same manner as D170E and perturbs the H-bond networks in a similar fashion. This is the second identification of a Mn4CaO5 metal ligand whose mutation influences the equilibrium between the different conformers of the S1 and S2 states without eliminating O2 evolution. This finding has implications for our understanding of the mechanism of O2 formation in terms of catalytically active/inactive conformations of the Mn4CaO5 cluster in its lower oxidation states.


Assuntos
Ácidos Carboxílicos , Mutação , Oxigênio , Complexo de Proteína do Fotossistema II , Cálcio/metabolismo , Cálcio/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa