Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Appl Environ Microbiol ; 88(1): e0097021, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644164

RESUMO

A longitudinal study was conducted to assess the impact of different antimicrobial exposures of nursery-phase pigs on patterns of phenotypic antimicrobial resistance (AMR) in fecal indicator organisms throughout the growing phase. Based on practical approaches used to treat moderate to severe porcine reproductive and respiratory syndrome virus (PRRSV)-associated secondary bacterial infections, two antimicrobial protocols of differing intensities of exposure [44.1 and 181.5 animal-treatment days per 1000 animal days at risk (ATD)] were compared with a control group with minimal antimicrobial exposure (2.1 ATD). Litter-matched pigs (n = 108) with no prior antimicrobial exposure were assigned randomly to the treatment groups. Pen fecal samples were collected nine times during the wean-to-finish period and cultured for Escherichia coli and Enterococcus spp. Antimicrobial-susceptibility testing was conducted using NARMS Gram-negative and Gram-positive antibiotic panels. Despite up to 65-fold difference in ATD, few and modest differences were observed between groups and over time. Resistance patterns at marketing overall remained similar to those observed at weaning, prior to any antimicrobial exposures. Those differences observed could not readily be reconciled with the patterns of antimicrobial exposure. Resistance of E. coli to streptomycin was higher in the group exposed to 44.1 ATD, but no aminoglycosides were used. In all instances where resistances differed between time points, the higher resistance occurred early in the trial prior to any antimicrobial exposures. These minimal impacts on AMR despite substantially different antimicrobial exposures point to the lack of understanding of the drivers of AMR at the population level and the likely importance of factors other than antimicrobial exposure. IMPORTANCE Despite a recognized need for more longitudinal studies to assess the effects of antimicrobial use on resistance in food animals, they remain sparse in the literature, and most longitudinal studies of pigs have been observational. The current experimental study had the advantages of greater control of potential confounding, precise measurement of antimicrobial exposures which differed markedly between groups and tracking of pigs until market age. Overall, resistance patterns were remarkably stable between the treatment groups over time, and the differences observed could not be readily reconciled with the antimicrobial exposures, indicating the likely importance of other determinants of AMR at the population level.


Assuntos
Anti-Infecciosos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Estudos Longitudinais , Suínos
2.
Animals (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338036

RESUMO

The extended storage of feed ingredients has been suggested as a method to mitigate the risk of pathogen transmission through contaminated ingredients. To validate the approach of extended storage of complete swine feed for the inactivation of swine viruses, an experiment was conducted wherein swine feed was inoculated with 10 mL of 1 × 105 TCID50/mL of porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and Senecavirus A (SVA) and stored for 58 d at 23.9 °C. Measures of feed quality were also evaluated at the initiation and conclusion of the storage period including screening for mycotoxins, characterization of select microbiological measures, and stability of phytase and dietary vitamins. Storing feed for 58 d under either ambient or anaerobic and temperature-controlled storage conditions did not result in substantial concerns related to microbiological profiles. Upon exposure to the feed following 58 d of storage in a swine bioassay, previously confirmed naïve pigs showed no signs of PEDV or SVA replication as detected by the PCR screening of oral fluids and serum antibody screening. Infection with SVA was documented in the positive control room through diagnostic testing through the State of Minnesota. For PRRSV, the positive control room demonstrated infection. For rooms consuming inoculated feed stored for 58 d, there was no evidence of PRRSV infection with the exception of unintentional aerosol transmission via a documented biocontainment breach. In summary, storing feed for 58 d at anaerobic and temperature-controlled environmental conditions of 23.9 °C validates that the extended storage of complete swine feed can be a method to reduce risks associated with pathogen transmission through feed while having minimal effects on measures of nutritional quality.

3.
Front Vet Sci ; 9: 952383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713879

RESUMO

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) has been a challenge for the U.S. swine industry for over 30 years, costing producers more than $600 million annually through reproductive disease in sows and respiratory disease in growing pigs. In this study, the impact of enhanced biosecurity practices of site location, air filtration, and feed mitigation was assessed on farrow-to-wean sites managed by a large swine production management company in the Midwest United States. Those three factors varied in the system that otherwise had implemented a stringent biosecurity protocol on farrow-to-wean sites. The routine biosecurity followed commonplace activities for farrow-to-wean sites that included but were not limited to visitor registration, transport disinfection, shower-in/shower-out procedures, and decontamination and disinfection of delivered items and were audited. Methods: Logistic regression was used to evaluate PRRSV infection by site based on the state where the site is located and air filtration use while controlling for other variables such as vaccine status, herd size, and pen vs. stall. A descriptive analysis was used to evaluate the impact of feed mitigation stratified by air filtration use. Results: Sites that used feed mitigates as additives in the diets, air filtration of barns, and that were in less swine-dense areas appeared to experience fewer outbreaks associated with PRRSV infection. Specifically, 23.1% of farms that utilized a feed mitigation program experienced PRRSV outbreaks, in contrast to 100% of those that did not. Sites that did not use air filtration had 20 times greater odds of having a PRRSV outbreak. The strongest protective effect was found when both air filtration and feed mitigation were used. Locations outside of Minnesota and Iowa had 98.5-99% lesser odds of infection as well. Discussion: Enhanced biosecurity practices may yield significant protective effects and should be considered for producers in swine-dense areas or when the site contains valuable genetics or many pigs.

4.
Transbound Emerg Dis ; 69(1): 121-127, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34698444

RESUMO

Outbreaks of African swine fever virus (ASFv) and porcine epidemic diarrhoea virus (PEDv) have revealed the susceptibility of livestock to disease transmitted through feed. Several viruses, including PEDv, survive in feed and may introduce disease that causes significant morbidity and mortality. In 2013, PEDv, which causes severe diarrhoea and vomiting, reached North America after spreading for decades across Eurasia. The global exchange of ingredients has created demand for products that prevent disease transmission from feed. Formaldehyde-based products are highly effective at inactivating enveloped viruses when applied at 3.25 kg/t. Alternative products to formaldehyde, including carboxylic acids, essential oils and medium chain fatty acids (MCFAs), have exhibited mixed efficacy against PEDv and require application rates higher than formaldehyde. Amphiphilic molecules like MCFAs disrupt the bilayer-lipid membranes that protect viral nucleic acids through the formation of micelles. Monoglycerides form micelles at lower concentrations than MCFAs, which suggests they may be more potent against enveloped viruses. The potential efficacy of monoglycerides against enveloped viruses in feed led to the development and examination of an experimental monoglyceride blend. The proprietary monoglyceride blend significantly (p < .0001) reduced PEDv viability in vitro after application to feed at 1.5, 2.5 and 3.5 kg/t. The monoglyceride was tested in a natural feeding behaviour challenge model in piglets. The feed was contaminated with ice-blocks containing viable PEDv, and the piglets were exposed to PEDv through the feed bin for 20 days. At the end of the 20-day challenge period, all pigs were rectally swabbed and tested for PEDv by qPCR. In the untreated control group 54.8% of the piglets tested positive for PEDv, whereas none of the MCFA-treated feed (10 kg/t inclusion) transmitted PEDv. Strikingly, the monoglyceride-treated groups (1.5, 2.5 and 3.5 kg/t) all exhibited 100% protection from PEDv. These data support the use of this proprietary monoglyceride blend in mitigation and prevention of viral disease transmission to piglets from contaminated feed.


Assuntos
Vírus da Febre Suína Africana , Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Ração Animal/análise , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Monoglicerídeos/farmacologia , Suínos , Doenças dos Suínos/prevenção & controle
5.
Viruses ; 14(2)2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35215966

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating disease of swine in many parts of the world. Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 is endemic in Europe, and prevalence of the subtypes differ spatially. In this study, we investigated a severe PRRS outbreak reported in 30 farms located in eastern Russia that belong to a large swine production company in the region that was also experiencing a pseudorabies outbreak in the system. Data included 28 ORF5 sequences from samples across 18 of the 25 infected sites, reverse transcriptase real-time polymerase chain reaction (RT-qPCR) results from diagnostic testing, reports of clinical signs, and animal movement records. We observed that the outbreak was due to two distinct variants of wildtype PRRSV type 1 subtype 1 with an average genetic distance of 15%. Results suggest that the wildtype PRRSV variants were introduced into the region around 2019, before affecting this production system (i.e., sow farms, nurseries, and finisher farms). Clinical signs did not differ between the variants, but they did differ by stage of pig production. Biosecurity lapses, including movement of animals from infected farms contributed to disease spread.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Surtos de Doenças/veterinária , Monitoramento Epidemiológico , Evolução Molecular , Fazendas , Epidemiologia Molecular , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Federação Russa/epidemiologia , Suínos
6.
Transbound Emerg Dis ; 69(1): 72-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34237198

RESUMO

Transboundary movement of animal feed and feed ingredients has been identified as a route for pathogen incursions. While imports of animals and animal-derived products are highly regulated for the purpose of infectious disease prevention, there has been less consideration of the viability of infectious agents in inanimate products, such as feed. This study investigated the ability of foot-and-mouth disease virus (FMDV) to remain infectious as a contaminant of commercial whole pig feed and select pig feed ingredients, and to establish the minimum infectious dose (MIDF ) required to cause foot-and-mouth disease (FMD) in pigs that consumed contaminated feed. FMDV viability in vitro varied depending on virus strain, feed product, and storage temperature, with increased duration of infectivity in soybean meal compared to pelleted whole feed. Specifically, both strains of FMDV evaluated remained viable through to the end of the 37 day observation period in experimentally contaminated soybean meal stored at 4 or 20°C . The MIDF for pigs consuming contaminated feed varied across virus strains and exposure duration in the range of 106.2 to 107 TCID50 . The ability of FMDV to cause infection in exposed pigs was mitigated by pre-treatment of feed with two commercially available feed additives, based on either formaldehyde (SalCURB®) or lactic acid (Guardian™). Our findings demonstrate that FMDV may remain infectious in pig feed ingredients for durations compatible with transoceanic transport. Although the observed MIDF was relatively high, variations in feeding conditions and biophysical characteristics of different virus strains may alter the probability of infection. These findings may be used to parameterize modelling of the risk of FMDV incursions and to regulate feed importation to minimize the risk of inadvertent importation.


Assuntos
Ração Animal/virologia , Contaminação de Alimentos , Febre Aftosa , Doenças dos Suínos , Animais , Febre Aftosa/prevenção & controle , Febre Aftosa/transmissão , Vírus da Febre Aftosa , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão
7.
Transbound Emerg Dis ; 68(4): 2603-2609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33064921

RESUMO

African swine fever virus (ASFV) can survive in soya-based products for 30 days with T ½ ranging from 9.6 to 12.9 days in soya bean meals and soya oil cake. As the United States imports soya-based products from several ASFV-positive countries, knowledge of the type and quantity of these specific imports, and their ports of entry (POE), is necessary information to manage risk. Using the data from the International Trade Commission Harmonized Tariff Schedule website in conjunction with pivot tables, we analysed imports across air, land and sea POE of soya-based products from 43 ASFV-positive countries to the United States during 2018 and 2019. In 2018, 104,366 metric tons (MT) of soya-based products, specifically conventional and organic soya bean meal, soya beans, soya oil cake and soya oil were imported from these countries into the United States via seaports only. The two largest suppliers were China (52.7%, 55,034 MT) and the Ukraine (42.9%, 44,775 MT). In 2019, 73,331 MT entered the United States and 54.7% (40,143 MT) came from the Ukraine and 8.4% (6,182 MT) from China. Regarding POE, 80.9%-83.2% of soya-based imports from China entered the United States at the seaports of San Francisco, CA, and Seattle, WA, while 89.4%-100% entered from the Ukraine via the seaports of New Orleans, LA, and Charlotte, NC. Analysis of five-year trends (2015-2019) of the volume of soya imports from China indicated reduction over time (with a noticeably sharp decrease between 2018 and 2019), and seaport utilization was consistent. In contrast, volume remained high for Ukrainian soya imports, and seaport utilization was inconsistent. Overall, this exercise introduced a new approach to collect objective data on an important risk factor, providing researchers, government officials and industry stakeholders a means to objectively identify and quantify potential channels of foreign animal disease entry into the United States.


Assuntos
Vírus da Febre Suína Africana , Ração Animal/análise , Animais , Comércio , Internacionalidade , Oceanos e Mares , Suínos , Estados Unidos
8.
Transbound Emerg Dis ; 68(2): 833-845, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32706431

RESUMO

The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified during the porcine epidemic diarrhoea virus (PEDV) epidemic in North America. Since that time, various feed additives have been evaluated at the laboratory level to measure their effect on viral viability and infectivity in contaminated feed using bioassay piglet models. While a valid first step, the conditions of these studies were not representative of commercial swine production. Therefore, the purpose of this study was to evaluate the ability of feed additives to mitigate the risk of virus-contaminated feed using a model based on real-world conditions. This new model used an 'ice-block' challenge, containing equal concentrations of porcine reproductive and respiratory syndrome virus (PRRSV), Senecavirus A (SVA) and PEDV, larger populations of pigs, representative commercial facilities and environments, along with realistic volumes of complete feed supplemented with selected additives. Following supplementation, the ice block was manually dropped into designated feed bins and pigs consumed feed by natural feeding behaviour. After challenge, samples were collected at the pen level (feed troughs, oral fluids) and at the animal level (clinical signs, viral infection, growth rate, and mortality) across five independent experiments involving 15 additives. In 14 of the additives tested, pigs on supplemented diets had significantly greater average daily gain (ADG), significantly lower clinical signs and infection levels, and numerically lower mortality rates compared to non-supplemented controls. In conclusion, the majority of the additives evaluated mitigated the effects of PRRSV 174, PEDV and SVA in contaminated feed, resulting in improved health and performance.


Assuntos
Ração Animal/virologia , Aditivos Alimentares , Doenças dos Suínos/virologia , Viroses/veterinária , Ração Animal/análise , Animais , América do Norte , Vírus da Diarreia Epidêmica Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Doenças dos Suínos/transmissão , Viroses/transmissão , Vírus
9.
Transbound Emerg Dis ; 67(6): 2365-2371, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32359207

RESUMO

The role of animal feed as a vehicle for the transport and transmission of viral diseases was first identified in 2014 during the porcine epidemic diarrhoea virus epidemic in North America. Since the identification of this novel risk factor, scientists have conducted numerous studies to understand its relevance. Over the past few years, the body of scientific evidence supporting the reality of this risk has grown substantially. In addition, numerous papers describing actions and interventions designed to mitigate this risk have been published. Therefore, the purpose of this paper is to review the literature on the risk of feed (what do we know) and the protocols developed to reduce this risk (what do we do) in an effort to develop a comprehensive document to raise awareness, facilitate learning, improve the accuracy of risk assessments and to identify knowledge gaps for future studies.


Assuntos
Ração Animal/virologia , Contaminação de Alimentos , Viroses/veterinária , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Contaminação de Alimentos/prevenção & controle , Vírus da Diarreia Epidêmica Suína , Medição de Risco , Fatores de Risco , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/transmissão , Estados Unidos/epidemiologia , Viroses/epidemiologia , Viroses/prevenção & controle , Viroses/transmissão
10.
Front Vet Sci ; 7: 325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671109

RESUMO

Pigs are faced with various perturbations throughout their lives, some of which are induced by management practices, others by natural causes. Resilience is described as the ability to recover from or cope with a perturbation. Using these data, activity patterns of an individual, as well as deviations from these patterns, can potentially be used to quantify resilience. Dynamic indicators of resilience (DIORs) may measure resilience on a different dimension by calculating variation, autocorrelation and skewness of activity from the absolute activity data. The aim of this study was to investigate the potential of using DIORs of activity, such as average, root mean square error (RMSE), autocorrelation or skewness as indicators of resilience to infection with the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). For this study, individual activity was obtained from 232 pigs equipped with ear tag accelerometers and inoculated with PRRSV between seven and 9 weeks of age. Clinical scores were assigned to each individual at 13 days post-challenge and used to distinguish between a resilient and non-resilient group. Mortality post-challenge was also recorded. Average, RMSE, autocorrelation and skewness of activity were calculated for the pre- and post-challenge phases, as well as the change in activity level pre- vs. post-challenge (i.e., delta). DIORs pre-challenge were expected to predict resilience to PRRSV in the absence of PRRSV infection, whereas DIORs post-challenge and delta were expected to reflect the effect of the PRRSV challenge. None of the pre-challenge DIORs predicted morbidity or mortality post-challenge. However, a higher RMSE in the 3 days post-challenge and larger change in level and RMSE of activity from pre- to post-challenge tended to increase the probability of clinical signs at day 13 post-infection (poor resilience). A higher skewness post-challenge (tendency) and a larger change in skewness from pre- to post-challenge increased the probability of mortality. A decrease in skewness post-challenge lowered the risk of mortality. The post-challenge DIOR autocorrelation was neither linked to morbidity nor to mortality. In conclusion, results from this study showed that post-challenge DIORs of activity can be used to quantify resilience to PRRSV challenge.

11.
J Virol ; 82(1): 358-70, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942527

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes an acute, viremic infection of 4 to 6 weeks, followed by a persistent infection lasting for several months. We characterized antibody and B-cell responses to viral proteins in acute and persistent infection to better understand the immunological basis of the prolonged infection. The humoral immune response to PRRSV was robust overall and varied among individual viral proteins, with the important exception of a delayed and relatively weak response to envelope glycoprotein 5 (GP5). Memory B cells were in secondary lymphoid organs, not in bone marrow or Peyer's patches, in contrast to the case for many mammalian species. Potent anti-PRRSV memory responses were elicited to recall antigen in vitro, even though a second infection did not increase the B-cell response in vivo, suggesting that productive reinfection does not occur in vivo. Antibody titers to several viral proteins decline over time, even though abundant antigen is known to be present in lymphoid tissues, possibly indicating ineffective antigen presentation. The appearance of antibodies to GP5 is delayed relative to the resolution of viremia, suggesting that anti-GP5 antibodies are not crucial for resolving viremia. Lastly, viral infection had no immunosuppressive effect on the humoral response to a second, unrelated antigen. Taking these data together, the active effector and memory B-cell responses to PRRSV are robust, and over time the humoral immune response to PRRSV is effective. However, the delayed response against GP5 early in infection may contribute to the prolonged acute infection and the establishment of persistence.


Assuntos
Antígenos Virais/imunologia , Linfócitos B/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Antivirais/sangue , Células da Medula Óssea/imunologia , Memória Imunológica/imunologia , Linfonodos/citologia , Linfonodos/imunologia , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Baço/citologia , Baço/imunologia , Suínos , Fatores de Tempo , Proteínas Virais/imunologia , Viremia
14.
PLoS One ; 13(3): e0194509, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558524

RESUMO

The goal of this study was to evaluate survival of important viral pathogens of livestock in animal feed ingredients imported daily into the United States under simulated transboundary conditions. Eleven viruses were selected based on global significance and impact to the livestock industry, including Foot and Mouth Disease Virus (FMDV), Classical Swine Fever Virus (CSFV), African Swine Fever Virus (ASFV), Influenza A Virus of Swine (IAV-S), Pseudorabies virus (PRV), Nipah Virus (NiV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Swine Vesicular Disease Virus (SVDV), Vesicular Stomatitis Virus (VSV), Porcine Circovirus Type 2 (PCV2) and Vesicular Exanthema of Swine Virus (VESV). Surrogate viruses with similar genetic and physical properties were used for 6 viruses. Surrogates belonged to the same virus families as target pathogens, and included Senecavirus A (SVA) for FMDV, Bovine Viral Diarrhea Virus (BVDV) for CSFV, Bovine Herpesvirus Type 1 (BHV-1) for PRV, Canine Distemper Virus (CDV) for NiV, Porcine Sapelovirus (PSV) for SVDV and Feline Calicivirus (FCV) for VESV. For the remaining target viruses, actual pathogens were used. Virus survival was evaluated using Trans-Pacific or Trans-Atlantic transboundary models involving representative feed ingredients, transport times and environmental conditions, with samples tested by PCR, VI and/or swine bioassay. SVA (representing FMDV), FCV (representing VESV), BHV-1 (representing PRV), PRRSV, PSV (representing SVDV), ASFV and PCV2 maintained infectivity during transport, while BVDV (representing CSFV), VSV, CDV (representing NiV) and IAV-S did not. Notably, more viruses survived in conventional soybean meal, lysine hydrochloride, choline chloride, vitamin D and pork sausage casings. These results support published data on transboundary risk of PEDV in feed, demonstrate survival of certain viruses in specific feed ingredients ("high-risk combinations") under conditions simulating transport between continents and provide further evidence that contaminated feed ingredients may represent a risk for transport of pathogens at domestic and global levels.


Assuntos
Ração Animal/virologia , Modelos Teóricos , Meios de Transporte , Vírus/crescimento & desenvolvimento , Ração Animal/análise , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Medição de Risco/métodos , Fatores de Risco , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Viroses/prevenção & controle , Viroses/veterinária , Viroses/virologia , Vírus/classificação
15.
Can J Vet Res ; 71(1): 23-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17193878

RESUMO

The objectives of this study were to evaluate the role of isolate pathogenicity in the aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV) and to determine whether PRRSV could be detected in air samples. To assess transmission, we exposed naive recipient pigs to aerosols from pigs inoculated with PRRSV MN-30100, an isolate of low pathogenicity, or MN-184, a highly pathogenic isolate. Blood samples and nasal-swab samples were collected from the inoculated pigs during the exposure period and tested for the presence of PRRSV RNA by quantitative (real-time) reverse-transcriptase polymerase chain reaction (RT-PCR); the amount of RNA was expressed as the median tissue culture dose per milliliter (TCID50/mL). The recipient pigs were clinically evaluated for 14 d after exposure and tested on days 7 and 14 by qualitative RT-PCR and enzyme-linked immunosorbent assay (ELISA). To prove the presence of PRRSV in aerosols, air samples were collected from each recipient-pig chamber by means of an air sampler. The PRRSV RNA concentrations were significantly higher (P = 0.01) in the blood samples from the pigs infected with PRRSV MN-184 than in the blood samples from those infected with PRRSV MN-30100; however, the concentrations in the nasal-swab samples were not significantly different (P = 0.26). Recipient pigs exposed to aerosols from pigs infected with PRRSV MN-184 became infected, whereas those exposed to aerosols from pigs infected with PRRSV MN-30100 did not; the difference in transmission rate was significant at P = 0.04. We detected PRRSV MN-184 RNA but not PRRSV MN-30100 RNA in air samples by PCR. Under the conditions of this study, PRRSV isolate pathogenicity may influence aerosol transmission of the virus.


Assuntos
Microbiologia do Ar , Síndrome Respiratória e Reprodutiva Suína/transmissão , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Aerossóis , Animais , Transmissão de Doença Infecciosa/veterinária , Microbiologia Ambiental , Nariz/virologia , Síndrome Respiratória e Reprodutiva Suína/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Suínos , Fatores de Tempo
16.
Am J Vet Res ; 68(5): 565-71, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17472459

RESUMO

OBJECTIVE: To determine effects of vaccination protocols with modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on persistence and transmission of virus in pigs infected with a homologous isolate and determine clinical and virologic responses following heterologous viral challenge. ANIMALS: Four hundred forty 6- to 8-week-old PRRSV-naïve pigs. PROCEDURES: Pigs were allocated into 5 groups. Groups A to D were inoculated with wild-type PRRSV VR2332. Group A (positive control pigs) received PRRSV only. Groups B, C, and D received modified-live PRRSV vaccine (1, 2, or 3 doses). Group E served as a negative control group. To evaluate viral transmission, sentinel pigs were introduced into each group at intervals from 37 to 67, 67 to 97, and 97 to 127 days postinoculation (DPI). To evaluate persistence, pigs were euthanized at 37, 67, 97, or 127 DPI. To assess clinical and virologic response after challenge, selected pigs from each group were inoculated at 98 DPI with a heterologous isolate (PRRSV MN-184). RESULTS: Mass vaccination significantly reduced the number of persistently infected pigs at 127 DPI. Vaccination did not eliminate wild-type PRRSV; administration of 2 or 3 doses of modified-live virus vaccine reduced viral shedding after 97 DPI. Previous exposure to wild-type and vaccine virus reduced clinical signs and enhanced growth following heterologous challenge but did not prevent infection. CONCLUSIONS AND CLINICAL RELEVANCE: Findings suggest that therapeutic vaccination may help to reduce economic losses of PRRSV caused by infection; further studies to define the role of modified-live virus vaccines in control-eradication programs are needed.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas Virais/imunologia , Animais , Síndrome Respiratória e Reprodutiva Suína/imunologia , Suínos/imunologia , Suínos/virologia , Vacinas Virais/administração & dosagem
17.
Theriogenology ; 66(3): 655-62, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16730057

RESUMO

Porcine reproductive and respiratory disease (PRRS) is an economically important disease around the globe; it has been estimated to cost the swine industry in USA approximately 560 million US dollars annually. It is well established that PRRS is caused by an enveloped, single-stranded positive-sense RNA virus known as porcine reproductive and respiratory syndrome virus (PRRSV). The inability to successfully control PRRS across farms via traditional methods (e.g. vaccine and animal flow) has led to a growing interest in area-based eradication. Important to such an initiative is information on PRRSV transmission within and between herds and intervention strategies to prevent its spread. This paper will review the current literature on selected areas of PRRS known to be important to the topic of pathogen elimination, including etiology, clinical manifestations, direct and indirect routes of transmission, as well as discuss measures for disease control, prevention and eradication.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/transmissão , Animais , Feminino , Masculino , Fatores de Risco , Suínos
18.
Can J Vet Res ; 70(1): 28-33, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16548329

RESUMO

The purpose of this study was to compare 3 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, low-cost filtration, and ultraviolet light (UV) irradiation. The HEPA-filtration system involved a pre-filter screen, a bag filter (EU8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (pre-filter), a fiberglass furnace filter, and an electrostatic furnace filter. For UV irradiation, a lamp emitted UVC radiation at 253.7 nm. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 9 of the 10 control replicates, 8 of the 10 UVC-irradiation replicates, 4 of the 10 low-cost-filtration replicates, and 0 of the 10 HEPA-filtration replicates. When compared with no intervention, HEPA filtration and low-cost filtration significantly reduced PRRSV transmission (P < 0.0005 and = 0.0286, respectively), whereas UV irradiation had no effect (P = 0.5). However, low-cost filtration and UV irradiation were significantly less effective (P = 0.043 and P < 0.0005, respectively) than HEPA filtration. In conclusion, under the conditions of this study, HEPA filtration was significantly more effective at reducing aerosol transmission of PRRSV than the other methods evaluated.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Filtração/veterinária , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/transmissão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Aerossóis , Microbiologia do Ar , Animais , Análise Custo-Benefício , Transmissão de Doença Infecciosa/prevenção & controle , Filtração/economia , Filtração/métodos , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos da radiação , Distribuição Aleatória , Suínos , Raios Ultravioleta
19.
Can J Vet Res ; 70(3): 168-75, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16850938

RESUMO

The purpose of this study was to compare 4 methods for the reduction of aerosol transmission of Porcine reproductive and respiratory syndrome virus (PRRSV): high-efficiency particulate air (HEPA) filtration, 2x-low-cost filtration, bag filtration, and use of a filter tested against particles derived from dioctylphthalate (DOP). The HEPA-filtration system used a prefilter screen, a bag filter (Eurovent [EU] 8 rating), and a HEPA filter (EU13 rating). The low-cost-filtration system contained mosquito netting (prefilter), 2 fiberglass furnace filters, and 2 electrostatic furnace filters. Bag filtration involved the use of a filter rated EU8 and a minimum efficiency reporting value (MERV) of 14. The 95%-DOP, 0.3-microm-filtration system involved a pleat-in-pleat V-bank disposable filter with a 95% efficiency rating for particles 0.3 microm or greater in diameter and ratings of EU9 and MERV 15. No form of intervention was used in the control group. The experimental facilities consisted of 2 chambers connected by a 1.3-m-long duct containing the treatments. Recipient pigs, housed in chamber 2, were exposed to artificial aerosols created by a mechanically operated mister containing modified live PRRSV vaccine located in chamber 1. Aerosol transmission of PRRSV occurred in 0 of the 10 HEPA-filtration replicates, 2 of the 10 bag-filtration replicates, 4 of the 10 low-cost-filtration replicates, 0 of the 10 95%-DOP, 0.3-microm-filtration replicates, and all 10 of the control replicates. Using a similar approach, we further evaluated the HEPA- and 95%-DOP, 0.3-microm-filtration systems. Infection was not observed in any of the 76 HEPA-filtration replicates but was observed in 2 of the 76 95%-DOP, 0.3-microm replicates and 42 of the 50 control replicates. Although the difference between the 95%-DOP, 0.3-microm and control replicates was significant (P < 0.0005), so was the level of failure of the 95%-DOP, 0.3-microm system (P = 0.02). In conclusion, under the conditions of this study, some methods of air filtration were significantly better than others in reducing aerosol transmission of PRRSV, and HEPA filtration was the only system that completely prevented transmission.


Assuntos
Microbiologia do Ar , Transmissão de Doença Infecciosa/veterinária , Filtração/veterinária , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/transmissão , Aerossóis , Animais , Transmissão de Doença Infecciosa/prevenção & controle , Filtração/instrumentação , Filtração/métodos , Tamanho da Partícula , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Distribuição Aleatória , Suínos
20.
Can J Vet Res ; 70(4): 297-301, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17042383

RESUMO

The objective of this study was to evaluate the role of different variables (animal age, bacterial coinfection, and isolate pathogenicity) on the shedding of Porcine reproductive and respiratory syndrome virus (PRRSV) in aerosols. Animals were grouped according to age (2 versus 6 mo) and inoculated with a PRRSV isolate of either low (MN-30100) or high (MN-184) pathogenicity. Selected animals in each group were also inoculated with Mycoplasma hyopneumoniae. The pigs were anesthetized and aerosol samples (1000 breaths/sample) collected on alternating days from 1 to 21 after PRRSV inoculation. The results indicated that animal age (P = 0.09), M. hyopneumoniae coinfection (P = 0.09), and PRRSV isolate pathogenicity (P = 0.15) did not significantly influence the concentration of PRRSV in aerosols. However, inoculation with the PRRSV MN-184 isolate significantly increased the probability of aerosol shedding (P = 0.00005; odds ratio = 3.22). Therefore, the shedding of PRRSV in aerosols may be isolate-dependent.


Assuntos
Microbiologia do Ar , Pneumonia Suína Micoplasmática , Síndrome Respiratória e Reprodutiva Suína/microbiologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Fatores Etários , Envelhecimento/fisiologia , Animais , Cardenolídeos , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Suínos , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa