Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935281

RESUMO

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Assuntos
Doenças das Valvas Cardíacas , Valva Mitral , Humanos , Camundongos , Animais , Valva Mitral/metabolismo , Doenças das Valvas Cardíacas/patologia , Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Camundongos Knockout , Fatores de Transcrição/metabolismo
2.
J Cardiovasc Dev Dis ; 9(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354775

RESUMO

Failure to form the septal structures that separate the left and right cardiac chambers results in defects that allow shunting of blood from one side of the heart to the other, leading to the mixing of oxygenated and de-oxygenated blood. The atrioventricular (AV) mesenchymal complex, consisting of the AV cushions, the Dorsal Mesenchymal Protrusion (DMP), and the mesenchymal cap, plays a crucial role in AV septation. Cells found in these structures derive from different cell lineages. In this study we have investigated the role of the transcription factor Sox9 in the Second Heart Field (SHF) with the emphasis on the formation of the atrioventricular septal complex. Using a mouse model in which Sox9 is conditionally deleted from the SHF we demonstrate that in this model virtually all mouse embryos develop septal abnormalities, including complete atrioventricular septal defects (cAVSDs) and isolated ventricular septal defects. Our morphological analyses indicate that perturbation of the development of the mesenchymal cap appears to play a crucial role in the pathogenesis of the atrial septal defects observed in the AVSDs and suggests that this component of the AV mesenchymal complex might play a more important role in AV septation than previously appreciated.

3.
Anat Rec (Hoboken) ; 302(1): 136-145, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289203

RESUMO

Primary cilia are small organelles projecting from the cell surface of many cell types. They play a crucial role in the regulation of various signaling pathway. In this study, we investigated the importance of cilia for heart development by conditionally deleting intraflagellar transport protein Ift88 using the col3.6-cre mouse. Analysis of col3.6;Ift88 offspring showed a wide spectrum of cardiovascular defects including double outlet right ventricle and atrioventricular septal defects. In addition, we found that in the majority of specimens the pulmonary veins did not properly connect to the developing left atrium. The abnormal connections found resemble those seen in patients with total anomalous pulmonary venous return. Analysis of mutant hearts at early stages of development revealed abnormal development of the dorsal mesocardium, a second heart field-derived structure at the venous pole intrinsically related to the development of the pulmonary veins. Data presented support a crucial role for primary cilia in outflow tract development and atrioventricular septation and their significance for the formation of the second heart field-derived tissues at the venous pole including the dorsal mesocardium. Furthermore, the results of this study indicate that proper formation of the dorsal mesocardium is critically important for the development of the pulmonary veins. Anat Rec, 302:136-145, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Cílios/patologia , Modelos Animais de Doenças , Comunicação Interatrial/patologia , Veias Pulmonares/anormalidades , Síndrome de Cimitarra/patologia , Animais , Colágeno Tipo III/fisiologia , Fatores de Transcrição MEF2/fisiologia , Masculino , Camundongos , Camundongos Knockout , Penetrância , Proteínas Supressoras de Tumor/fisiologia
4.
Hum Immunol ; 73(3): 263-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213007

RESUMO

Host genetic factors are thought to contribute to the interindividual differences in the control of human immunodeficiency virus (HIV) replication. The aim of the present investigation was to determine whether genes encoding GM and KM allotypes-genetic markers of immunoglobulin γ and κ chains, respectively-and those encoding Fcγ receptor (FcγR) IIa and IIIa are associated with the host control of HIV replication. A case-control design was employed among HIV-infected subjects, with a group that spontaneously controlled HIV replication ("controllers") as cases (n = 73) and those who did not control replication as controls (n = 100). Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism, direct DNA sequencing, and TaqMan genotyping assays. In Caucasian Americans, certain combinations of FcγR and GM genotypes were differentially distributed between controllers and noncontrollers. Among the noncarriers of the FcγRIIa arginine allele, GM21 noncarriers had over 7-fold greater odds of being controllers than the carriers of this allele (odds ratio [OR] = 7.47). These GM determinants also interacted with FcγRIIIa alleles. Among the carriers of the FcγRIIIa valine allele, GM21 noncarriers had over 3-fold greater odds of being controllers than the carriers of this allele (OR = 3.26). These results demonstrate epistatic interactions of genes on chromosomes 14 (GM) and 1 (FcγR) in influencing the control of HIV replication.


Assuntos
Epistasia Genética , Infecções por HIV/genética , HIV/fisiologia , Alótipos Gm de Imunoglobulina/genética , Receptores de IgG/genética , Adulto , Doenças Assintomáticas , Portador Sadio , Cromossomos Humanos Par 14/genética , Feminino , HIV/patogenicidade , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Alótipos Km de Imunoglobulina/genética , Masculino , Pessoa de Meia-Idade , Receptores de IgG/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa