Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(16): 5244-5258, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37581276

RESUMO

3CLpro is a viable target for developing antiviral therapies against the coronavirus. With the urgent need to find new possible inhibitors, a structure-based virtual screening approach was developed. This study recognized 75 pharmacologically bioactive compounds from our in-house library of 1052 natural product-based compounds that satisfied drug-likeness criteria and exhibited good bioavailability and membrane permeability. Among these compounds, three promising sulfonamide chalcones were identified by combined theoretical and experimental approaches, with SWC423 being the most suitable representative compound due to its competitive inhibition and low cytotoxicity in Vero E6 cells (EC50 = 0.89 ± 0.32 µM; CC50 = 25.54 ± 1.38 µM; SI = 28.70). The binding and stability of SWC423 in the 3CLpro active site were investigated through all-atom molecular dynamics simulation and fragment molecular orbital calculation, indicating its potential as a 3CLpro inhibitor for further SARS-CoV-2 therapeutic research. These findings suggested that inhibiting 3CLpro with a sulfonamide chalcone such as SWC423 may pave the effective way for developing COVID-19 treatments.


Assuntos
COVID-19 , Chalconas , Antivirais/farmacologia , Chalconas/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Células Vero , Chlorocebus aethiops , Animais
2.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770770

RESUMO

New N-containing xanthone analogs of α-mangostin were synthesized via one-pot Smiles rearrangement. Using cesium carbonate in the presence of 2-chloroacetamide and catalytic potassium iodide, α-mangostin (1) was subsequently transformed in three steps to provide ether 2, amide 3, and amine 4 in good yields at an optimum ratio of 1:3:3, respectively. The evaluation of the biological activities of α-mangostin and analogs 2-4 was described. Amine 4 showed promising cytotoxicity against the non-small-cell lung cancer H460 cell line fourfold more potent than that of cisplatin. Both compounds 3 and 4 possessed antitrypanosomal properties against Trypanosoma brucei rhodesiense at a potency threefold stronger than that of α-mangostin. Furthermore, ether 2 gave potent SARS-CoV-2 main protease inhibition by suppressing 3-chymotrypsinlike protease (3CLpro) activity approximately threefold better than that of 1. Fragment molecular orbital method (FMO-RIMP2/PCM) indicated the improved binding interaction of 2 in the 3CLpro active site regarding an additional ether moiety. Thus, the series of N-containing α-mangostin analogs prospectively enhance druglike properties based on isosteric replacement and would be further studied as potential biotically active chemical entries, particularly for anti-lung-cancer, antitrypanosomal, and anti-SARS-CoV-2 main protease applications.


Assuntos
Antineoplásicos , COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , SARS-CoV-2/metabolismo , Antineoplásicos/farmacologia , Éteres , Peptídeo Hidrolases , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Antivirais
3.
J Chem Inf Model ; 62(6): 1498-1509, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35245424

RESUMO

The coronavirus disease pandemic is a constant reminder that global citizens are in imminent danger of exposure to emerging infectious diseases. Therefore, developing a technique for inhibitor discovery is essential for effective drug design. Herein, we proposed fragment molecular orbital (FMO)-based virtual screening to predict the molecular binding energy of potential severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease inhibitors. The integration of quantum mechanical approaches and trajectory analysis from a microsecond molecular dynamics simulation was used to identify potential inhibitors. We identified brominated baicalein as a potent inhibitor of the SARS-CoV-2 main protease and confirmed its inhibitory activity in an in vitro assay. Brominated baicalein did not demonstrate significant toxicity in either in vitro or in vivo studies. The pair interaction energy from FMO-RIMP2/PCM and inhibitory constants based on the protease enzyme assay suggested that the brominated baicalein could be further developed into novel SARS-CoV-2 protease inhibitors.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Antivirais/química , Proteases 3C de Coronavírus , Flavanonas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
4.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566194

RESUMO

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Assuntos
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacologia , Animais , Antimaláricos/farmacologia , Benzodioxóis , Humanos , Mamíferos , Simulação de Acoplamento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia
5.
Heliyon ; 10(11): e31987, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867992

RESUMO

Background: Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico. Objective: We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods. Also, we aimed to prove whether 3CLpro and ACE2 neutralization were major targets and explored whether any additional targets existed. Methods: We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA). Results: AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 µM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 µM). AM was slightly more efficient in the variants (EC50 0.88-2.41 µM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 µM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM. Conclusion: AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.

6.
Heliyon ; 8(8): e10396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061023

RESUMO

Intelectins are putative innate immune lectins that are found throughout chordates. The first intelectin reported was Xenopus laevis cortical granule lectin-1 (XCGL-1 or XL-35). XCGL-1 is critical in fertilization membrane development in Xenopus. Here, we explored the biochemical properties of XCGL-1. The cysteines responsible for forming intermolecular disulfide bonds were identified. XCGL-1 adopted a four-lobed structure as observed by electron microscopy. The full-length XCGL-1 and the carbohydrate recognition domain (CRD) bind galactose-containing carbohydrates at nanomolar to micromolar affinities. Molecular modeling suggested that galactoside ligands coordinated the binding site calcium ion and interacted with residues around the groove made available by the non-conserved substitution compared to human intelectin-1. Folding conditions for production of recombinant XCGL-1 CRD were also investigated. Our results not only provide new biochemical insights into the function of XCGL-1, but may also provide foundation for further applications of XCGL-1 as glycobiology tools.

7.
Comput Struct Biotechnol J ; 20: 2784-2797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677603

RESUMO

A global crisis of coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted millions of people's lives throughout the world. In parallel to vaccine development, identifying potential antiviral agents against SARS-CoV-2 has become an urgent need to combat COVID-19. One of the most attractive drug targets for discovering anti-SARS-CoV-2 agents is the main protease (Mpro), which plays a pivotal role in the viral life cycle. This study aimed to elucidate a series of twenty-one 12-dithiocarbamate-14-deoxyandrographolide analogues as SARS-CoV-2 Mpro inhibitors using in vitro and in silico studies. These compounds were initially screened for the inhibitory activity toward SARS-CoV-2 Mpro by in vitro enzyme-based assay. We found that compounds 3 k, 3 l, 3 m and 3 t showed promising inhibitory activity against SARS-CoV-2 Mpro with >50% inhibition at 10 µM. Afterward, the binding mode of each compound in the active site of SARS-CoV-2 Mpro was explored by molecular docking. The optimum docked complexes were then chosen and subjected to molecular dynamic (MD) simulations. The MD results suggested that all studied complexes were stable along the simulation time, and most of the compounds could fit well with the SARS-CoV-2 Mpro active site, particularly at S1, S2 and S4 subsites. The per-residue decomposition free energy calculations indicated that the hot-spot residues essential for ligand binding were T25, H41, C44, S46, M49, C145, H163, M165, E166, L167, D187, R188, Q189 and T190. Therefore, the obtained information from the combined experimental and computational techniques could lead to further optimization of more specific and potent andrographolide analogues toward SARS-CoV-2 Mpro.

8.
PLoS One ; 17(6): e0269563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771802

RESUMO

SARS-CoV-2 causes the current global pandemic coronavirus disease 2019. Widely-available effective drugs could be a critical factor in halting the pandemic. The main protease (3CLpro) plays a vital role in viral replication; therefore, it is of great interest to find inhibitors for this enzyme. We applied the combination of virtual screening based on molecular docking derived from the crystal structure of the peptidomimetic inhibitors (N3, 13b, and 11a), and experimental verification revealed FDA-approved drugs that could inhibit the 3CLpro of SARS-CoV-2. Three drugs were selected using the binding energy criteria and subsequently performed the 3CLpro inhibition by enzyme-based assay. In addition, six common drugs were also chosen to study the 3CLpro inhibition. Among these compounds, lapatinib showed high efficiency of 3CLpro inhibition (IC50 value of 35 ± 1 µM and Ki of 23 ± 1 µM). The binding behavior of lapatinib against 3CLpro was elucidated by molecular dynamics simulations. This drug could well bind with 3CLpro residues in the five subsites S1', S1, S2, S3, and S4. Moreover, lapatinib's key chemical pharmacophore features toward SAR-CoV-2 3CLpro shared important HBD and HBA with potent peptidomimetic inhibitors. The rational design of lapatinib was subsequently carried out using the obtained results. Our discovery provides an effective repurposed drug and its newly designed analogs to inhibit SARS-CoV-2 3CLpro.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptidomiméticos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Humanos , Lapatinib/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
9.
Sci Rep ; 12(1): 17984, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289271

RESUMO

Parallel cascade selection molecular dynamics-based ligand binding-path sampling (LB-PaCS-MD) was combined with fragment molecular orbital (FMO) calculations to reveal the ligand path from an aqueous solution to the SARS-CoV-2 main protease (Mpro) active site and to customise a ligand-binding pocket suitable for delivering a potent inhibitor. Rubraxanthone exhibited mixed-inhibition antiviral activity against SARS-CoV-2 Mpro, relatively low cytotoxicity, and high cellular inhibition. However, the atomic inhibition mechanism remains ambiguous. LB-PaCS-MD/FMO is a hybrid ligand-binding evaluation method elucidating how rubraxanthone interacts with SARS-CoV-2 Mpro. In the first step, LB-PaCS-MD, which is regarded as a flexible docking, efficiently samples a set of ligand-binding pathways. After that, a reasonable docking pose of LB-PaCS-MD is evaluated by the FMO calculation to elucidate a set of protein-ligand interactions, enabling one to know the binding affinity of a specified ligand with respect to a target protein. A possible conformation was proposed for rubraxanthone binding to the SARS-CoV-2 Mpro active site, and allosteric inhibition was elucidated by combining blind docking with k-means clustering. The interaction profile, key binding residues, and considerable interaction were elucidated for rubraxanthone binding to both Mpro sites. Integrated LB-PaCS-MD/FMO provided a more reasonable complex structure for ligand binding at the SARS-CoV-2 Mpro active site, which is vital for discovering and designing antiviral drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Ligantes , Inibidores de Proteases/química , Proteínas não Estruturais Virais/metabolismo , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica Molecular
10.
Comput Struct Biotechnol J ; 19: 3364-3371, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109016

RESUMO

The 3C-like main protease of SARS-CoV-2 (3CLPro) is responsible for the cleavage of the viral polyprotein. This process is essential for the viral life cycle. Therefore, 3CLPro is a promising target to develop antiviral drugs for COVID-19 prevention and treatment. Traditional enzymatic assays for the identification of 3CLPro inhibitors rely on peptide-based colorimetric or fluorogenic substrates. However, the COVID-19 pandemic has limit or delay access to these substrates, especially for researchers in developing countries attempting to screen natural product libraries. We explored the use of the fluorescent probe 8-anilinonaphthalene-1-sulfonate (ANS) as an alternative assay for inhibitor identification. Fluorescence enhancement upon binding of ANS to 3CLPro was observed, and this interaction was competitive with a peptide substrate. The utility of ANS-based competitive binding assay to identify 3CLPro inhibitors was demonstrated with the flavonoid natural products baicalein and rutin. The molecular nature of ANS and rutin interaction with 3CLPro was explored with molecular modeling. Our results suggested that ANS could be employed in a competitive binding assay to facilitate the identification of novel SARS-CoV-2 antiviral compounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa