Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781967

RESUMO

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Assuntos
Matriz Extracelular , Mucosa Intestinal , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesoderma/metabolismo , Mesoderma/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Morfogênese , Metaloproteinases da Matriz/metabolismo
2.
Annu Rev Biochem ; 80: 211-37, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21548783

RESUMO

Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/fisiologia , Integrinas , Canais de Potássio , Proteínas da Matriz Viral , Integrinas/química , Integrinas/metabolismo , Íons/química , Íons/metabolismo , Ligantes , Modelos Moleculares , Canais de Potássio/química , Canais de Potássio/metabolismo , Conformação Proteica , Transdução de Sinais/fisiologia , Termodinâmica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
3.
Nat Chem Biol ; 20(6): 751-760, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480980

RESUMO

Transmembrane (TM) domains as simple as a single span can perform complex biological functions using entirely lipid-embedded chemical features. Computational design has the potential to generate custom tool molecules directly targeting membrane proteins at their functional TM regions. Thus far, designed TM domain-targeting agents have been limited to mimicking the binding modes and motifs of natural TM interaction partners. Here, we demonstrate the design of de novo TM proteins targeting the erythropoietin receptor (EpoR) TM domain in a custom binding topology competitive with receptor homodimerization. The TM proteins expressed in mammalian cells complex with EpoR and inhibit erythropoietin-induced cell proliferation. In vitro, the synthetic TM domain complex outcompetes EpoR homodimerization. Structural characterization reveals that the complex involves the intended amino acids and agrees with our designed molecular model of antiparallel TM helices at 1:1 stoichiometry. Thus, membrane protein TM regions can now be targeted in custom-designed topologies.


Assuntos
Proteínas de Membrana , Ligação Proteica , Receptores da Eritropoetina , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Receptores da Eritropoetina/metabolismo , Receptores da Eritropoetina/química , Modelos Moleculares , Proliferação de Células/efeitos dos fármacos , Receptores de Citocinas/metabolismo , Receptores de Citocinas/química , Sequência de Aminoácidos , Multimerização Proteica , Animais , Células HEK293
4.
Proc Natl Acad Sci U S A ; 120(12): e2300769120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36927157

RESUMO

In neurodegenerative diseases, proteins fold into amyloid structures with distinct conformations (strains) that are characteristic of different diseases. However, there is a need to rapidly identify amyloid conformations in situ. Here, we use machine learning on the full information available in fluorescent excitation/emission spectra of amyloid-binding dyes to identify six distinct different conformational strains in vitro, as well as amyloid-ß (Aß) deposits in different transgenic mouse models. Our EMBER (excitation multiplexed bright emission recording) imaging method rapidly identifies conformational differences in Aß and tau deposits from Down syndrome, sporadic and familial Alzheimer's disease human brain slices. EMBER has in situ identified distinct conformational strains of tau inclusions in astrocytes, oligodendrocytes, and neurons from Pick's disease. In future studies, EMBER should enable high-throughput measurements of the fidelity of strain transmission in cellular and animal neurodegenerative diseases models, time course of amyloid strain propagation, and identification of pathogenic versus benign strains.


Assuntos
Doença de Alzheimer , Doença de Pick , Camundongos , Animais , Humanos , Microscopia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Pick/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Placa Amiloide/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082148

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a single-pass transmembrane receptor of the immunoglobulin superfamily that is secreted in a soluble (sTREM2) form. Mutations in TREM2 have been linked to increased risk of Alzheimer's disease (AD). A prominent neuropathological component of AD is deposition of the amyloid-ß (Aß) into plaques, particularly Aß40 and Aß42. While the membrane-bound form of TREM2 is known to facilitate uptake of Aß fibrils and the polarization of microglial processes toward amyloid plaques, the role of its soluble ectodomain, particularly in interactions with monomeric or fibrillar Aß, has been less clear. Our results demonstrate that sTREM2 does not bind to monomeric Aß40 and Aß42, even at a high micromolar concentration, while it does bind to fibrillar Aß42 and Aß40 with equal affinities (2.6 ± 0.3 µM and 2.3 ± 0.4 µM). Kinetic analysis shows that sTREM2 inhibits the secondary nucleation step in the fibrillization of Aß, while having little effect on the primary nucleation pathway. Furthermore, binding of sTREM2 to fibrils markedly enhanced uptake of fibrils into human microglial and neuroglioma derived cell lines. The disease-associated sTREM2 mutant, R47H, displayed little to no effect on fibril nucleation and binding, but it decreased uptake and functional responses markedly. We also probed the structure of the WT sTREM2-Aß fibril complex using integrative molecular modeling based primarily on the cross-linking mass spectrometry data. The model shows that sTREM2 binds fibrils along one face of the structure, leaving a second, mutation-sensitive site free to mediate cellular binding and uptake.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/genética , Peptídeos beta-Amiloides/genética , Animais , Humanos , Cinética , Glicoproteínas de Membrana/genética , Camundongos , Microglia/metabolismo , Mutação/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Receptores Imunológicos/genética , Proteínas tau/genética , Proteínas tau/metabolismo
6.
J Chem Inf Model ; 64(2): 425-434, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38191997

RESUMO

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural-network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study, SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.


Assuntos
Proteínas , Estudos Prospectivos , Ligantes , Estudos Retrospectivos , Proteínas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação
7.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155106

RESUMO

Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.


Assuntos
Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Motivos de Aminoácidos , Bases de Dados de Proteínas , Mutação/genética , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723045

RESUMO

The randomization and screening of combinatorial DNA libraries is a powerful technique for understanding sequence-function relationships and optimizing biosynthetic pathways. Although it can be difficult to predict a priori which sequence combinations encode functional units, it is often possible to omit undesired combinations that inflate library size and screening effort. However, defined library generation is difficult when a complex scan through sequence space is needed. To overcome this challenge, we designed a hybrid valve- and droplet-based microfluidic system that deterministically assembles DNA parts in picoliter droplets, reducing reagent consumption and bias. Using this system, we built a combinatorial library encoding an engineered histidine kinase (HK) based on bacterial CpxA. Our library encodes designed transmembrane (TM) domains that modulate the activity of the cytoplasmic domain of CpxA and variants of the structurally distant "S helix" located near the catalytic domain. We find that the S helix sets a basal activity further modulated by the TM domain. Surprisingly, we also find that a given TM motif can elicit opposing effects on the catalytic activity of different S-helix variants. We conclude that the intervening HAMP domain passively transmits signals and shapes the signaling response depending on subtle changes in neighboring domains. This flexibility engenders a richness in functional outputs as HKs vary in response to changing evolutionary pressures.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Microfluídica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ativação Enzimática , Expressão Gênica , Biblioteca Gênica , Microfluídica/instrumentação , Microfluídica/métodos , Modelos Moleculares , Conformação Molecular , Engenharia de Proteínas/métodos , Proteínas Quinases/genética , Relação Estrutura-Atividade
9.
Proc Natl Acad Sci U S A ; 117(52): 33246-33253, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318174

RESUMO

We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.


Assuntos
Engenharia de Proteínas , Proteínas Recombinantes/química , Regulação Alostérica , Biocatálise , Coenzimas/metabolismo , Ligantes , Metais/metabolismo , Modelos Moleculares , Oxirredução , Domínios Proteicos , Estrutura Secundária de Proteína
10.
Q Rev Biophys ; 53: e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32041676

RESUMO

Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.


Assuntos
Engenharia de Proteínas/métodos , Proteínas/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biotecnologia , Catálise , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Íons , Cinética , Ligantes , Substâncias Macromoleculares , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Zinco/química
11.
Biochemistry ; 61(21): 2280-2294, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219675

RESUMO

The SARS-CoV-2 envelope (E) protein is a viroporin associated with the acute respiratory symptoms of COVID-19. E forms cation-selective ion channels that assemble in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment. The channel activity of E is linked to the inflammatory response of the host cell to the virus. Like many viroporins, E is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the E stoichiometry have led to inconclusive results and suggested mixtures of oligomers whose exact nature might vary with the detergent used. Here, we employ 19F solid-state nuclear magnetic resonance and the centerband-only detection of exchange (CODEX) technique to determine the oligomeric number of E's transmembrane domain (ETM) in lipid bilayers. The CODEX equilibrium value, which corresponds to the inverse of the oligomeric number, indicates that ETM assembles into pentamers in lipid bilayers, without any detectable fraction of low-molecular-weight oligomers. Unexpectedly, at high peptide concentrations and in the presence of the lipid phosphatidylinositol, the CODEX data indicate that more than five 19F spins are within a detectable distance of about 2 nm, suggesting that the ETM pentamers cluster in the lipid bilayer. Monte Carlo simulations that take into account peptide-peptide and peptide-lipid interactions yielded pentamer clusters that reproduced the CODEX data. This supramolecular organization is likely important for E-mediated virus assembly and budding and for the channel function of the protein.


Assuntos
Proteínas do Envelope de Coronavírus , Bicamadas Lipídicas , SARS-CoV-2 , Bicamadas Lipídicas/química , Domínios Proteicos , Proteínas Viroporinas , Proteínas do Envelope de Coronavírus/química
12.
J Am Chem Soc ; 144(2): 769-776, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985907

RESUMO

The influenza A M2 channel, a prototype for viroporins, is an acid-activated viroporin that conducts protons across the viral membrane, a critical step in the viral life cycle. Four central His37 residues control channel activation by binding subsequent protons from the viral exterior, which opens the Trp41 gate and allows proton flux to the interior. Asp44 is essential for maintaining the Trp41 gate in a closed state at high pH, resulting in asymmetric conduction. The prevalent D44N mutant disrupts this gate and opens the C-terminal end of the channel, resulting in increased conduction and a loss of this asymmetric conduction. Here, we use extensive Multiscale Reactive Molecular Dynamics (MS-RMD) and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations with an explicit, reactive excess proton to calculate the free energy of proton transport in this M2 mutant and to study the dynamic molecular-level behavior of D44N M2. We find that this mutation significantly lowers the barrier of His37 deprotonation in the activated state and shifts the barrier for entry to the Val27 tetrad. These free energy changes are reflected in structural shifts. Additionally, we show that the increased hydration around the His37 tetrad diminishes the effect of the His37 charge on the channel's water structure, facilitating proton transport and enabling activation from the viral interior. Altogether, this work provides key insight into the fundamental characteristics of PT in WT M2 and how the D44N mutation alters this PT mechanism, and it expands understanding of the role of emergent mutations in viroporins.


Assuntos
Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Prótons , Teoria Quântica , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Água/química
13.
Nat Methods ; 16(4): 319-322, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923372

RESUMO

Site-specific protein cleavage is essential for many protein-production protocols and typically requires proteases. We report the development of a chemical protein-cleavage method that is achieved through the use of a sequence-specific nickel-assisted cleavage (SNAC)-tag. We demonstrate that the SNAC-tag can be inserted before both water-soluble and membrane proteins to achieve fusion protein cleavage under biocompatible conditions with efficiency comparable to that of enzymes, and that the method works even when enzymatic cleavages fail.


Assuntos
Enzimas/química , Níquel/química , Proteínas/química , Materiais Biocompatíveis , Cromatografia Líquida de Alta Pressão , Biologia Computacional , DNA/química , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Técnicas Genéticas , Hidrólise , Espectrometria de Massas , Biblioteca de Peptídeos , Peptídeos/química , Domínios Proteicos , Proteólise , Proteínas Recombinantes/química , Especificidade por Substrato , Temperatura , Trombina/química
14.
J Med Virol ; 94(5): 2188-2200, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080027

RESUMO

Brilacidin, a mimetic of host defense peptides (HDPs), is currently in Phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by inactivating the virus. In this study, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on the host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS-CoV-2 pseudovirus into multiple cell lines, and heparin, an HSPG mimetic, abolishes the inhibitory activity of brilacidin on SARS-CoV-2 pseudovirus cell entry. In addition, we found that brilacidin has broad-spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV-229E, HCoV-OC43, and HCoV-NL63. Mechanistic studies revealed that brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface. Brilacidin partially loses its antiviral activity when heparin was included in the cell cultures, supporting the host-targeting mechanism. Drug combination therapy showed that brilacidin has a strong synergistic effect with remdesivir against HCoV-OC43 in cell culture. Taken together, this study provides appealing findings for the translational potential of brilacidin as a broad-spectrum antiviral for coronaviruses including SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavirus Humano 229E , Coronavirus Humano OC43 , Antivirais/farmacologia , Guanidinas , Humanos , Pirimidinas , SARS-CoV-2
15.
Nat Chem Biol ; 16(6): 653-659, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32152544

RESUMO

Defining the biologically active structures of proteins in their cellular environments remains challenging for proteins with multiple conformations and functions, where only a minor conformer might be associated with a given function. Here, we use deep mutational scanning to probe the structure and dynamics of α-synuclein, a protein known to adopt disordered, helical and amyloid conformations. We examined the effects of 2,600 single-residue substitutions on the ability of intracellularly expressed α-synuclein to slow the growth of yeast. Computational analysis of the data showed that the conformation responsible for this phenotype is a long, uninterrupted, amphiphilic helix with increasing dynamics toward the C terminus. Deep mutational scanning can therefore determine biologically active conformations in cellular environments, even for a highly dynamic multi-conformational protein.


Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , alfa-Sinucleína/química , alfa-Sinucleína/genética , Sequência de Aminoácidos , Amiloide/química , Biblioteca Genômica , Modelos Moleculares , Fenótipo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Leveduras/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(25): 12295-12300, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160446

RESUMO

Lateral transmembrane (TM) helix-helix interactions between single-span membrane proteins play an important role in the assembly and signaling of many cell-surface receptors. Often, these helices contain two highly conserved yet distinct interaction motifs, arranged such that the motifs cannot be engaged simultaneously. However, there is sparse experimental evidence that dual-engagement mechanisms play a role in biological signaling. Here, we investigate the function of the two conserved interaction motifs in the TM domain of the integrin ß3-subunit. The first motif uses reciprocating "large-large-small" amino acid packing to mediate the interaction of the ß3 and αIIb TM domains and maintain the inactive resting conformation of the platelet integrin αIIbß3. The second motif, S-x3-A-x3-I, is a variant of the classical "G-x3-G" motif. Using site-directed mutagenesis, optical trap-based force spectroscopy, and molecular modeling, we show that S-x3-A-x3-I does not engage αIIb but rather mediates the interaction of the ß3 TM domain with the TM domain of the αv-subunit of the integrin αvß3. Like αIIbß3, αvß3 on circulating platelets is inactive, and in the absence of platelet stimulation is unable to interact with components of the subendothelial matrix. However, disrupting any residue in the ß3 S-x3-A-x3-I motif by site-directed mutations is sufficient to induce αvß3 binding to the αvß3 ligand osteopontin and to the monoclonal antibody WOW-1. Thus, the ß3-integrin TM domain is able to engage in two mutually exclusive interactions that produce alternate α-subunit pairing, creating two integrins with distinct biological functions.


Assuntos
Integrina alfaVbeta3/metabolismo , Proteínas de Membrana/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Animais , Plaquetas/metabolismo , Células CHO , Membrana Celular/metabolismo , Sequência Conservada , Cricetulus , Humanos , Integrina alfaVbeta3/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Domínios Proteicos
17.
Proc Natl Acad Sci U S A ; 116(33): 16357-16366, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358628

RESUMO

Misfolding of the microtubule-binding protein tau into filamentous aggregates is characteristic of many neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Determining the structures and dynamics of these tau fibrils is important for designing inhibitors against tau aggregation. Tau fibrils obtained from patient brains have been found by cryo-electron microscopy to adopt disease-specific molecular conformations. However, in vitro heparin-fibrillized 2N4R tau, which contains all four microtubule-binding repeats (4R), was recently found to adopt polymorphic structures. Here we use solid-state NMR spectroscopy to investigate the global fold and dynamics of heparin-fibrillized 0N4R tau. A single set of 13C and 15N chemical shifts was observed for residues in the four repeats, indicating a single ß-sheet conformation for the fibril core. This rigid core spans the R2 and R3 repeats and adopts a hairpin-like fold that has similarities to but also clear differences from any of the polymorphic 2N4R folds. Obtaining a homogeneous fibril sample required careful purification of the protein and removal of any proteolytic fragments. A variety of experiments and polarization transfer from water and mobile side chains indicate that 0N4R tau fibrils exhibit heterogeneous dynamics: Outside the rigid R2-R3 core, the R1 and R4 repeats are semirigid even though they exhibit ß-strand character and the proline-rich domains undergo large-amplitude anisotropic motions, whereas the two termini are nearly isotropically flexible. These results have significant implications for the structure and dynamics of 4R tau fibrils in vivo.


Assuntos
Doença de Alzheimer/genética , Citoesqueleto/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas tau/química , Doença de Alzheimer/patologia , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/patologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/ultraestrutura , Microtúbulos/química , Microtúbulos/genética , Ressonância Magnética Nuclear Biomolecular , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ligação Proteica/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Proteínas tau/genética , Proteínas tau/ultraestrutura
18.
Biochemistry ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342217

RESUMO

The influenza A M2 wild-type (WT) proton channel is the target of the anti-influenza drug rimantadine. Rimantadine has two enantiomers, though most investigations into drug binding and inhibition have used a racemic mixture. Solid-state NMR experiments using the full length-M2 WT have shown significant spectral differences that were interpreted to indicate tighter binding for (R)- vs (S)-rimantadine. However, it was unclear if this correlates with a functional difference in drug binding and inhibition. Using X-ray crystallography, we have determined that both (R)- and (S)-rimantadine bind to the M2 WT pore with slight differences in the hydration of each enantiomer. However, this does not result in a difference in potency or binding kinetics, as shown by similar values for kon, koff, and Kd in electrophysiological assays and for EC50 values in cellular assays. We concluded that the slight differences in hydration for the (R)- and (S)-rimantadine enantiomers are not relevant to drug binding or channel inhibition. To further explore the effect of the hydration of the M2 pore on binding affinity, the water structure was evaluated by grand canonical ensemble molecular dynamics simulations as a function of the chemical potential of the water. Initially, the two layers of ordered water molecules between the bound drug and the channel's gating His37 residues mask the drug's chirality. As the chemical potential becomes more unfavorable, the drug translocates down to the lower water layer, and the interaction becomes more sensitive to chirality. These studies suggest the feasibility of displacing the upper water layer and specifically recognizing the lower water layers in novel drugs.

19.
Biochemistry ; 60(21): 1722-1730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010565

RESUMO

The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.


Assuntos
Integrinas/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Triptofano/análogos & derivados , Aminoácidos/metabolismo , Plaquetas/metabolismo , Membrana Celular/metabolismo , Integrinas/fisiologia , Peptídeos/síntese química , Peptídeos/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Triptofano/síntese química , Triptofano/química
20.
J Am Chem Soc ; 143(1): 252-259, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373215

RESUMO

De novo protein design offers the opportunity to test our understanding of how metalloproteins perform difficult transformations. Attaining high-resolution structural information is critical to understanding how such designs function. There have been many successes in the design of porphyrin-binding proteins; however, crystallographic characterization has been elusive, limiting what can be learned from such studies as well as the extension to new functions. Moreover, formation of highly oxidizing high-valent intermediates poses design challenges that have not been previously implemented: (1) purposeful design of substrate/oxidant access to the binding site and (2) limiting deleterious oxidation of the protein scaffold. Here we report the first crystallographically characterized porphyrin-binding protein that was programmed to not only bind a synthetic Mn-porphyrin but also maintain binding site access to form high-valent oxidation states. We explicitly designed a binding site with accessibility to dioxygen units in the open coordination site of the Mn center. In solution, the protein is capable of accessing a high-valent Mn(V)-oxo species which can transfer an O atom to a thioether substrate. The crystallographic structure is within 0.6 Å of the design and indeed contained an aquo ligand with a second water molecule stabilized by hydrogen bonding to a Gln side chain in the active site, offering a structural explanation for the observed reactivity.


Assuntos
Hemeproteínas/química , Manganês/química , Metaloporfirinas/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Hemeproteínas/genética , Hemeproteínas/metabolismo , Oxirredução , Ligação Proteica , Engenharia de Proteínas , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa