Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Eixos temáticos
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Health Qual Life Outcomes ; 21(1): 77, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474950

RESUMO

BACKGROUND: Neurostimulation is a highly effective therapy for the treatment of chronic Intractable pain, however, due to the complexity of pain, measuring a subject's long-term response to the therapy remains difficult. Frequent measurement of patient-reported outcomes (PROs) to reflect multiple aspects of subjects' pain is a crucial step in determining therapy outcomes. However, collecting full-length PROs is burdensome for both patients and clinicians. The objective of this work is to identify the reduced set of questions from multiple validated PROs that can accurately characterize chronic pain patients' responses to neurostimulation therapies. METHODS: Validated PROs were used to capture pain, physical function and disability, as well as psychometric, satisfaction, and global health metrics. PROs were collected from 509 patients implanted with Spinal Cord Stimulation (SCS) or Dorsal Root Ganglia (DRG) neurostimulators enrolled in the prospective, international, post-market REALITY study (NCT03876054, Registration Date: March 15, 2019). A combination of linear regression, Pearson's correlation, and factor analysis were used to eliminate highly correlated questions and find the minimal meaningful set of questions within the predefined domains of each scale. RESULTS: The shortened versions of the questionnaires presented almost identical accuracy for classifying the therapy outcomes as compared to the validated full-length versions. In addition, principal component analysis was performed on all the PROs and showed a robust clustering of pain intensity, psychological factors, physical function, and sleep across multiple PROs. A selected set of questions captured from multiple PROs can provide adequate information for measuring neurostimulation therapy outcomes. CONCLUSIONS: PROs are important subjective measures to evaluate the physiological and psychological aspects of pain. However, these measures are cumbersome to collect. These shorter and more targeted PROs could result in better patient engagement, and enhanced and more frequent data collection processes for digital health platforms that minimize patient burden while increasing therapeutic benefits for chronic pain patients.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Dor Crônica/terapia , Dor Crônica/psicologia , Gânglios Espinais/fisiologia , Manejo da Dor , Medidas de Resultados Relatados pelo Paciente , Estudos Prospectivos , Qualidade de Vida , Resultado do Tratamento , Estudos Clínicos como Assunto
2.
NPJ Digit Med ; 6(1): 146, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582839

RESUMO

Spinal Cord Stimulation (SCS) is a well-established therapy for treating chronic pain. However, perceived treatment response to SCS therapy may vary among people with chronic pain due to diverse needs and backgrounds. Patient Reported Outcomes (PROs) from standard survey questions do not provide the full picture of what has happened to a patient since their last visit, and digital PROs require patients to visit an app or otherwise regularly engage with software. This study aims to assess the feasibility of using digital biomarkers collected from wearables during SCS treatment to predict pain and PRO outcomes. Twenty participants with chronic pain were recruited and implanted with SCS. During the six months of the study, activity and physiological metrics were collected and data from 15 participants was used to develop a machine learning pipeline to objectively predict pain levels and categories of PRO measures. The model reached an accuracy of 0.768 ± 0.012 in predicting the pain intensity of mild, moderate, and severe. Feature importance analysis showed that digital biomarkers from the smartwatch such as heart rate, heart rate variability, step count, and stand time can contribute to modeling different aspects of pain. The results of the study suggest that wearable biomarkers can be used to predict therapy outcomes in people with chronic pain, enabling continuous, real-time monitoring of patients during the use of implanted therapies.

3.
Bioelectron Med ; 9(1): 13, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37340467

RESUMO

BACKGROUND: Neurostimulation is an effective therapy for treating and management of refractory chronic pain. However, the complex nature of pain and infrequent in-clinic visits, determining subject's long-term response to the therapy remains difficult. Frequent measurement of pain in this population can help with early diagnosis, disease progression monitoring, and evaluating long-term therapeutic efficacy. This paper compares the utilization of the common subjective patient-reported outcomes with objective measures captured through a wearable device for predicting the response to neurostimulation therapy. METHOD: Data is from the ongoing international prospective post-market REALITY clinical study, which collects long-term patient-reported outcomes from 557 subjects implanted by Spinal Cord Stimulator (SCS) or Dorsal Root Ganglia (DRG) neurostimulators. The REALITY sub-study was designed for collecting additional wearables data on a subset of 20 participants implanted with SCS devices for up to six months post implantation. We first implemented a combination of dimensionality reduction algorithms and correlation analyses to explore the mathematical relationships between objective wearable data and subjective patient-reported outcomes. We then developed machine learning models to predict therapy outcome based on the subject's response to the numerical rating scale (NRS) or patient global impression of change (PGIC). RESULTS: Principal component analysis showed that psychological aspects of pain were associated with heart rate variability, while movement-related measures were strongly associated with patient-reported outcomes related to physical function and social role participation. Our machine learning models using objective wearable data predicted PGIC and NRS outcomes with high accuracy without subjective data. The prediction accuracy was higher for PGIC compared with the NRS using subjective-only measures primarily driven by the patient satisfaction feature. Similarly, the PGIC questions reflect an overall change since the study onset and could be a better predictor of long-term neurostimulation therapy outcome. CONCLUSIONS: The significance of this study is to introduce a novel use of wearable data collected from a subset of patients to capture multi-dimensional aspects of pain and compare the prediction power with the subjective data from a larger data set. The discovery of pain digital biomarkers could result in a better understanding of the patient's response to therapy and their general well-being.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa