Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(10): e2202581, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36571465

RESUMO

Articular cartilage (AC) plays an unquestionable role in joint movements but unfortunately the healing capacity is restricted due to its avascular and acellular nature. While cartilage tissue engineering has been lifesaving, it is very challenging to remodel the complex cartilage composition and architecture with gradient physio-mechanical properties vital to proper tissue functions. To address these issues, a better understanding of the intrinsic AC properties and how cells respond to stimuli from the external microenvironment must be better understood. This is essential in order to take one step closer to producing functional cartilaginous constructs for clinical use. Recently, biopolymers have aroused much attention due to their versatility, processability, and flexibility because the properties can be tailored to match the requirements of AC. This review highlights polymeric scaffolds developed in the past decade for reconstruction of zonal AC layers including the superficial zone, middle zone, and deep zone by means of exogenous stimuli such as physical, mechanical, and biological/chemical signals. The mimicked properties are reviewed in terms of the biochemical composition and organization, cell fate (morphology, orientation, and differentiation), as well as mechanical properties and finally, the challenges and potential ways to tackle them are discussed.


Assuntos
Cartilagem Articular , Materiais Biocompatíveis/química , Sinais (Psicologia) , Engenharia Tecidual , Diferenciação Celular
2.
Int J Biol Macromol ; 205: 638-650, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35217083

RESUMO

We report a chitosan-based nanocomposite thermogel with superior shear modulus resembling that of cartilage and dual pro-chondrogenic and anti-inflammatory functions. Two therapeutic agents, kartogenin (KGN) and diclofenac sodium (DS), are employed to promote chondrogenesis of stem cells and suppress inflammation, respectively. To extend the release time in a controlled manner, KGN is encapsulated in the uniform-sized starch microspheres and DS is loaded into the halloysite nanotubes. Both drug carriers are doped into the maleimide-modified chitosan hydrogel to produce a shear modulus of 167 ± 5 kPa that is comparable to that of articular cartilage (50-250 kPa). Owing to the hydrogel injectability and relatively suitable gelation time (5 ± 0.5 min) at 37 °C, this system potentially constitutes a manageable platform for clinical practice. Moreover, sustained linear drug release for over a month boosts chondro-differentiation of stem cells to eliminate the necessity for multiple administrations. Considering virtues such as thermogel strength and ability to co-deliver anti-inflammatory and chondro-inductive biomolecules continuously, the materials and strategy have promising potential in functional cartilage tissue engineering.


Assuntos
Cartilagem Articular , Quitosana , Células-Tronco Mesenquimais , Diferenciação Celular , Condrogênese , Liberação Controlada de Fármacos , Hidrogéis , Engenharia Tecidual
3.
Adv Healthc Mater ; 10(4): e2001018, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32803848

RESUMO

Articular cartilage has limited regeneration capacity because of its acellular and avascular nature. Although tissue engineering has been shown to be life-saving, reforming cartilage zones required by the appropriate tissue functions are challenging. Herein, the need is addressed by designing and producing a nano-engineered structure mimicking the superficial zone (SZ) of articular cartilage. The substrate is based on silk with good mechanical properties in conjunction with nano-topographical and biochemical cues. Nanopillar arrays are produced on the silk surface to regulate the stem cell morphology rendering them with a flattened ellipsoidal shape that is similar to that of chondrocytes in the SZ of natural cartilage. The cell interactions are enhanced by nitrogen ion implantation and the biomolecule, kartogenin (KGN), is loaded to promote chondrogenesis of the stem cells and furthermore, a thermosensitive chitosan hydrogel is formed on the nanopatterned silk to produce rheological properties similar to those of a synovial fluid. Based on the in vitro results and mechanical properties, it is a desirable implantable smart structure mimicking the cartilage SZ with the ability of continuous drug release for cartilage regeneration.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Biomimética , Condrócitos , Condrogênese , Hidrogéis , Regeneração
4.
Colloids Surf B Biointerfaces ; 192: 111059, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32380404

RESUMO

Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(ß-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize ß-Glycerophosphate (ß-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, ß-GP and chitosan concentration on rheological and swelling properties of the hydrogels. Accordingly, we generate significant statistical models by response surface method to predict these properties. These models provide us beneficial tools to tune the hydrogel properties depending on the cartilage defect location and properties. Finally, we incorporate a recently discovered small biomolecule, kartogenin (KGN), for promoting chondrogenesis of stem cells into the optimized hydrogel. The hydrogel's shear modulus is 78 ±â€¯5 kPa which covers a wide range of human articular cartilage shear modulus (50-250 kPa). It can be injected to the defects non-invasively at room temperature which gels at 37 °C within minutes. Additionally, it provides a sustained KGN release for ∼40 days that may eliminate the need of multiple injections. In vitro chondrogenic results confirm enhanced chondrogenic differentiation of human adipose mesenchymal stem cells (hAMSCs) treated with KGN-loaded hydrogel, compared to pure KGN. Based on the enhanced hydrogel shear modulus, injectability, gelation behavior, long-term drug release and in vitro results, this thermosensitive hydrogel looks promising for cartilage tissue engineering.

5.
Mater Sci Eng C Mater Biol Appl ; 116: 111173, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806249

RESUMO

Because of unique properties such as the lightweight, natural biodegradability, and biocompatibility, magnesium alloys are promising in biomedical implants. However, inadequate corrosion resistance in the physiological environment remains a technical hurdle and application of coatings is a viable means to overcome the deficiency. Also, the antibacterial properties are very important in order to mitigate post-implantation complications arising from bacterial infection. In this study, a biocompatible silk film is deposited on AZ31 Mg alloy to enhance the corrosion resistance and by means of oxygen plasma etching, nature-inspired nanopatterns are fabricated on the surface of the silk film to improve the inherent antibacterial properties. The biocompatibility and antibacterial properties are determined with MC3T3-E1 osteoblast cells and E. coli and S. aureus, respectively. The antimicrobial properties of the silk coated AZ31 are better than those of the bare alloy probably due to the combined effects of the nanopatterns and alkalinity associated with leaching of Mg ions. The ß-sheets formed on the silk film is found to result in 104 times reduction in the corrosion current density and 50% reduction in Mg leaching after 1 day. Although degradation of the ß-sheets is observed to begin after 1 day, the amount of Mg ions leached to the medium from silk-coated AZ31 is still 17% lower than that from the bare one. The biomimicking nanopatterns on the natural silk film improve the corrosion resistance, biocompatibility, and antibacterial properties simultaneously and have large clinical potential.


Assuntos
Magnésio , Seda , Ligas/farmacologia , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Escherichia coli , Magnésio/farmacologia , Staphylococcus aureus , Propriedades de Superfície
6.
Front Bioeng Biotechnol ; 8: 602009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344434

RESUMO

Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.

7.
ACS Appl Mater Interfaces ; 11(35): 31605-31614, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31385497

RESUMO

Many postsurgical complications stem from bacteria colony formation on the surface of implants, but the usage of antibiotic agents may cause antimicrobial resistance. Therefore, there is a strong demand for biocompatible materials with an intrinsic antibacterial resistance not requiring extraneous chemical agents. In this study, homogeneous nanocones were fabricated by oxygen plasma etching on the surface of natural, biocompatible Bombyx mori silk films. The new hydroxyl bonds formed on the surface of the nanopatterned film by plasma etching increased the surface energy by around 176%. This hydrophilic nanostructure reduced the bacterial attachment by more than 90% for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria and at the same time improved the proliferation of osteoblast cells by 30%. The nanoengineered substrate and pristine silk were cultured for 6 h with three different bacteria concentrations of 107, 105, and 103 CFU mL-1 and the cell proliferation on the nanopatterned samples was significantly higher due to limited bacteria attachment and prevention of biofilm formation. The concept and materials described here reveal a promising alternative to produce biomaterials with an inherent biocompatibility and bacterial resistance simultaneously to mitigate postsurgical infections and minimize the use of antibiotics.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Implantes Experimentais , Membranas Artificiais , Osteoblastos/metabolismo , Seda/química , Staphylococcus aureus/fisiologia , Engenharia Tecidual , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Teste de Materiais , Camundongos
8.
Carbohydr Polym ; 174: 633-645, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821114

RESUMO

Thermosensitive Chitosan hydrogels which can be injected into defects with minimally invasive approach were prepared. Also starch micro/nano particles were synthesized via water-in-oil (W/O) miniemulsion technique. The starch particles were incorporated into the chitosan hydrogel to prepare injectable thermosensitive hydrogel composites. Tube inverting method, compression tests, swelling studies, XRD, SEM, OM, DLS, UV-vis spectroscopy were used for investigations. Results revealed that increasing crosslinker and surfactant contents and stirring rate leads to particle size reduction. Particle size was modeled using design of experiments (DOE) via the response surface method (RSM). Due to analysis of variance (ANOVA), the particle sizes can be predicted by quadratic model within the design space. Gelation time and compressive modulus measurements showed the particles significant influence on the blend network density and hydrogel mechanical properties. Swelling measurements revealed that incorporation of starch particles in chitosan hydrogel increases its swelling coefficient significantly. The innovative architecture, namely micro/nano particles in gel can be considered as a dual delivery platform or smart scaffold for engineering of certain tissues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa