Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 280(47): 39077-85, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16186099

RESUMO

The assembly of bacterial membrane proteins with large periplasmic loops is an intrinsically complex process because the SecY translocon has to coordinate the signal recognition particle-dependent targeting and integration of transmembrane domains with the SecA-dependent translocation of the periplasmic loop. The current model suggests that the ATP hydrolysis by SecA is required only if periplasmic loops larger than 30 amino acids have to be translocated. In agreement with this model, our data demonstrate that the signal recognition particle- and SecA-dependent multiple spanning membrane protein YidC becomes SecA-independent if the large periplasmic loop connecting transmembrane domains 1 and 2 is reduced to less than 30 amino acids. Strikingly, however, we were unable to render single spanning membrane proteins SecA-independent by reducing the length of their periplasmic loops. For these proteins, the complete assembly was always SecA-dependent even if the periplasmic loop was reduced to 13 amino acids. If, however, the 13-amino acid-long periplasmic loop was fused to a downstream transmembrane domain, SecA was no longer required for complete translocation. Although these data support the current model on the SecA dependence of multiple spanning membrane proteins, they indicate a novel function of SecA for the assembly of single spanning membrane proteins. This could suggest that single and multiple spanning membrane proteins are processed differently by the bacterial SecY translocon.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo
2.
EMBO Rep ; 6(5): 476-81, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15815684

RESUMO

Co-translational membrane targeting of proteins by the bacterial signal-recognition particle (SRP) requires the specific interaction of the SRP-ribosome nascent chain complex with FtsY, the bacterial SRP receptor (SR). FtsY is homologous to the SRalpha-subunit of the eukaryotic SR, which is tethered to the endoplasmic-reticulum membrane by its interaction with the integral SRbeta-subunit. In contrast to SRalpha, FtsY is partly membrane associated and partly located in the cytosol. However, the mechanisms by which FtsY associates with the membrane are unclear. No gene encoding an SRbeta homologue has been found in bacterial genomes, and the presence of an FtsY-specific membrane receptor has not been shown so far. We now provide evidence for the direct interaction between FtsY and the SecY translocon. This interaction offers an explanation of how the bacterial SRP cycle is regulated in response to available translocation channels.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Canais de Translocação SEC
3.
J Biol Chem ; 278(24): 22161-7, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12682042

RESUMO

In Escherichia coli, three different types of proteins engage the SecY translocon of the inner bacterial membrane for translocation or insertion: 1) polytopic membrane proteins that prior to their insertion into the membrane are targeted to the translocon using the bacterial signal recognition particle (SRP) and its receptor; 2) secretory proteins that are targeted to and translocated across the SecY translocon in a SecA- and SecB-dependent reaction; and 3) membrane proteins with large periplasmic domains, requiring SRP for targeting and SecA for the translocation of the periplasmic moiety. In addition to its role as a targeting device for membrane proteins, a function of the bacterial SRP in the export of SecB-independent secretory proteins has also been postulated. In particular, beta-lactamase, a hydrolytic enzyme responsible for cleavage of the beta-lactam ring containing antibiotics, is considered to be recognized and targeted by SRP. To examine the role of the SRP pathway in beta-lactamase targeting and export, we performed a detailed in vitro analysis. Chemical cross-linking and membrane binding assays did not reveal any significant interaction between SRP and beta-lactamase nascent chains. More importantly, membrane vesicles prepared from mutants lacking a functional SRP pathway did block the integration of SRP-dependent membrane proteins but supported the export of beta-lactamase in the same way as that of the SRP-independent protein OmpA. These data demonstrate that in contrast to previous results, the bacterial SRP is not involved in the export of beta-lactamase and further suggest that secretory proteins of Gram-negative bacteria in general are not substrates of SRP.


Assuntos
Partícula de Reconhecimento de Sinal/metabolismo , beta-Lactamases/metabolismo , Transporte Biológico , Divisão Celular , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Genótipo , Mutação , Plasmídeos/metabolismo , Canais de Translocação SEC
4.
Mol Cell ; 12(4): 937-46, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14580344

RESUMO

The twin-arginine translocation (Tat) machinery of the Escherichia coli inner membrane is dedicated to the export of proteins harboring a conserved SRRxFLK motif in their signal sequence. TatA, TatB, and TatC are the functionally essential constituents of the Tat machinery, but their precise function is unknown. Using site-specific crosslinking, we have analyzed interactions of the twin-arginine precursor preSufI with the Tat proteins upon targeting to inner membrane vesicles. TatA association is observed only in the presence of a transmembrane H(+) gradient. TatB is found in contact with the entire signal sequence and adjacent parts of mature SufI. Interaction of TatC with preSufI is, however, restricted to a discrete area around the consensus motif. The results reveal a hierarchy in targeting of a Tat substrate such that for the primary interaction, TatC is both necessary and sufficient while a subsequent association with TatB likely mediates transfer from TatC to the actual Tat pore.


Assuntos
Membrana Celular/enzimologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Prótons , Transdução de Sinais/fisiologia , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa