Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 60(7): 4252-4260, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33480696

RESUMO

Boron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaB5C crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900 °C. By combining a set of characterization tools including powder X-ray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials.

2.
Inorg Chem ; 59(20): 14983-14988, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33001644

RESUMO

Lithium borides have been synthesized exclusively through classical solid-state chemistry processes that lead to bulk materials. Indeed, due to the lack of reactivity of the solid boron precursors usually employed and to the high covalent connectivity in such solids, high temperatures and long reaction times are necessary to obtain lithium borides. These conditions result in extensive crystal growth. Here we present the synthesis of nanoparticles of a lithium boride bearing tunnel-like cavities templated by neutral Li2O species, which have been reported to be labile. To reach this goal, a liquid-phase synthesis in inorganic molten salts has been developed. The Li6B18(Li2O)x nanoparticles have been characterized by scanning and transmission electronic microscopy (SEM and TEM), X-ray diffraction (XRD), and Raman spectroscopy. We provide an in-depth structural characterization by using 1H, 7Li, and 11B solid-state nuclear magnetic resonance (NMR) coupled with DFT modeling to provide the first assignment of 7Li and 11B solid-state NMR signals in lithium borides. We then assess the nanoparticle morphology oriented along the direction of the cavities. This feature shows similarities with structurally related hexagonal tungsten bronzes and could therefore affect the electrochemical and ion exchange properties.

3.
Acc Chem Res ; 51(4): 930-939, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29533580

RESUMO

The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.

4.
Chem Sci ; 11(31): 8256-8266, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34094179

RESUMO

Luminescent compounds obtained from the thermal reaction of citric acid and urea have been studied and utilized in different applications in the past few years. The identified reaction products range from carbon nitrides over graphitic carbon to distinct molecular fluorophores. On the other hand, the solid, non-fluorescent reaction product produced at higher temperatures has been found to be a valuable precursor for the CO2-laser-assisted carbonization reaction in carbon laser-patterning. This work addresses the question of structural identification of both, the fluorescent and non-fluorescent reaction products obtained in the thermal reaction of citric acid and urea. The reaction products produced during autoclave-microwave reactions in the melt were thoroughly investigated as a function of the reaction temperature and the reaction products were subsequently separated by a series of solvent extractions and column chromatography. The evolution of a green molecular fluorophore, namely HPPT, was confirmed and a full characterization study on its structure and photophysical properties was conducted. The additional blue fluorescence is attributed to oligomeric ureas, which was confirmed by complementary optical and structural characterization. These two components form strong hydrogen-bond networks which eventually react to form solid, semi-crystalline particles with a size of ∼7 nm and an elemental composition of 46% C, 22% N, and 29% O. The structural features and properties of all three main components were investigated in a comprehensive characterization study.

5.
Dalton Trans ; 47(23): 7634-7639, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29796509

RESUMO

Inorganic nanocomposites made of an inorganic matrix containing nanoparticle inclusions provide materials of advanced mechanical, magnetic, electrical properties and multifunctionality. The range of compounds that can be implemented in nanocomposites is still narrow and new preparation methods are required to design such advanced materials. Herein, we describe how the combination of nanocrystal synthesis in molten salts with subsequent heat treatment at a pressure in the GPa range gives access to a new family of boron-based nanocomposites. With the case studies of HfB2/ß-HfB2O5 and CaB6/CaB2O4(iv), we demonstrate by X-ray diffraction and through (scanning) transmission electron microscopy the crystallization of borate matrices into rare compounds and unique nanostructured solids, while metal boride nanocrystals remain dispersed in the matrix and maintain small sizes below 30 nm, thus demonstrating a new multidisciplinary approach toward nanoscaled heterostructures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa