Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pharm Stat ; 15(2): 165-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26689604

RESUMO

Our paper proposes a methodological strategy to select optimal sampling designs for phenotyping studies including a cocktail of drugs. A cocktail approach is of high interest to determine the simultaneous activity of enzymes responsible for drug metabolism and pharmacokinetics, therefore useful in anticipating drug-drug interactions and in personalized medicine. Phenotyping indexes, which are area under the concentration-time curves, can be derived from a few samples using nonlinear mixed effect models and maximum a posteriori estimation. Because of clinical constraints in phenotyping studies, the number of samples that can be collected in individuals is limited and the sampling times must be as flexible as possible. Therefore to optimize joint design for several drugs (i.e., to determine a compromise between informative times that best characterize each drug's kinetics), we proposed to use a compound optimality criterion based on the expected population Fisher information matrix in nonlinear mixed effect models. This criterion allows weighting different models, which might be useful to take into account the importance accorded to each target in a phenotyping test. We also computed windows around the optimal times based on recursive random sampling and Monte-Carlo simulation while maintaining a reasonable level of efficiency for parameter estimation. We illustrated this strategy for two drugs often included in phenotyping cocktails, midazolam (probe for CYP3A) and digoxin (P-glycoprotein), based on the data of a previous study, and were able to find a sparse and flexible design. The obtained design was evaluated by clinical trial simulations and shown to be efficient for the estimation of population and individual parameters.


Assuntos
Ensaios Clínicos Fase I como Assunto/métodos , Digoxina/farmacocinética , Midazolam/farmacocinética , Dinâmica não Linear , Ensaios Clínicos Fase I como Assunto/estatística & dados numéricos , Digoxina/metabolismo , Interações Medicamentosas/fisiologia , Humanos , Midazolam/metabolismo , Projetos Piloto , Estudos Prospectivos
2.
Xenobiotica ; 44(1): 1-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23756242

RESUMO

1. The health effects of inhaled mycotoxins remain poorly documented despite their presence in bioaerosols. 5-methoxy-sterigmatocystin is produced in association with sterigmatocystin by some Aspergillus spp., sometimes in larger amounts than sterigmatocystin. Whereas sterigmatocystin can be metabolized through cytochromes P450 (CYP), UDP-glucuronosyltransferases and sulfotransferases in airway epithelial cells, little is known about 5-methoxy-sterigmatocystin. 2. The 5-methoxy-sterigmatocystin metabolites were analyzed using human recombinant CYP and porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. The induction of xenobiotic-metabolizing enzymes was examined by real-time quantitative PCR for mRNA expression and 7-ethoxyresorufin O-deethylation activity. 3. CYP1A1 metabolized 5-methoxy-sterigmatocystin into hydroxy-nor-methoxy-sterigmatocystin, nor-methoxy-sterigmatocystin and dihydroxy-methoxy-sterigmatocystin. CYP1A2 led to monohydroxy-methoxy-sterigmatocystin. In PTEC, 5-methoxy-sterigmatocystin metabolism resulted into a glucuroconjugate of 5-methoxy-sterigmatocystin, a sulfoconjugate and a glucuroconjugate of monohydroxy-methoxy-sterigmatocystin. The exposure of PTEC for 24 h to 1 µM 5-methoxy-sterigmatocystin induced a significant increase in the mRNA levels of CYP1A1, without significant induction of the 7-ethoxyresorufin O-deethylation activity. 4. These data suggest that 5-methoxy-sterigmatocystin is mainly detoxified in airway cells through conjugation, as sterigmatocystin. However, while CYP produced a reactive metabolite of sterigmatocystin, no such metabolite was detected with 5-methoxy-sterigmatocystin. Nevertheless, 5-methoxy-sterigmatocystin increases the CYP1A1 mRNA levels. The long-term consequences remain unknown.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Redes e Vias Metabólicas/fisiologia , Esterigmatocistina/análogos & derivados , Traqueia/citologia , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Humanos , Estrutura Molecular , Reação em Cadeia da Polimerase em Tempo Real , Esterigmatocistina/química , Esterigmatocistina/metabolismo , Esterigmatocistina/toxicidade , Suínos , Espectrometria de Massas em Tandem
3.
Anal Chem ; 85(17): 8412-20, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23901908

RESUMO

Characterization of fungal secondary metabolomes has become a challenge due to the industrial applications of many of these molecules, and also due to the emergence of fungal threats to public health and natural ecosystems. Given that, the aim of the present study was to develop an untargeted method to analyze fungal secondary metabolomes by combining high-accuracy mass spectrometry and double isotopic labeling of fungal metabolomes. The strain NRRL 35693 of Aspergillus fumigatus , an important fungal pathogen, was grown on three wheat grain substrates: (1) naturally enriched grains (99% (12)C), (2) grains enriched 96.8% with (13)C, (3) grains enriched with 53.4% with (13)C and 96.8% with (15)N. Twenty-one secondary metabolites were unambiguously identified by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) analysis. AntiBase 2012 was used to confirm the identity of these metabolites. Additionally, on the basis of tandem mass spectrometry (MS(n)) experiments, it was possible to identify for the first time the formula and the structure of fumigaclavine D, a new member of the fumigaclavines family. Post biosynthesis degradation of tryptoquivaline F by methanol was also identified during HPLC-HRMS analysis by the detection of a carbon atom of nonfungal origin. The interest of this method lies not only on the unambiguous determination of the exact chemical formulas of fungal secondary metabolites but also on the easy discrimination of nonfungal products. Validation of the method was thus successfully achieved in this study, and it can now be applied to other fungal metabolomes, offering great possibilities for the discovery of new drugs or toxins.


Assuntos
Aspergillus fumigatus/metabolismo , Marcação por Isótopo/métodos , Metaboloma/fisiologia , Espectrometria de Massas em Tandem/métodos , Triticum/metabolismo , Aspergillus fumigatus/química , Triticum/química
4.
Anal Bioanal Chem ; 405(18): 6077-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23700103

RESUMO

A comparative study of the electrochemical conversion and the biotransformation performed by the cytochrome P450 (CYP450) obtained by rat liver microsomes has been achieved to elucidate the oxidation mechanism of both acebutolol and alprenolol. For this purpose, a wide range of reactions such as N-dealkylation, O-dealkoxylation, aromatic hydroxylation, benzyl hydroxylation, alkyl hydroxylation, and aromatic hydroxylation have been examined in this study, and their mechanisms have been compared. Most of the results of the electrochemical oxidation have been found to be in accordance with those obtained by incubating acebutolol and alprenolol in the presence of CYP450, i.e., N-dealkylation, benzyl hydroxylation, and O-dealkoxylation reactions catalyzed by liver microsomes were found to be predicted by the electrochemical oxidation. The difficulty for the electrochemical process to mimic both aromatic and alkyl hydroxylation reactions has also been discussed, and the hypothesis for the absence of aromatic hydroxylated and alkyl hydroxylated products, respectively, for alprenolol and acebutolol, under the anodic oxidation has been supported by theoretical calculation. The present study highlights the potential and limitation of coupling of electrochemistry-liquid chromatography-high-resolution mass spectrometry for the study of phase I and phase II reactions of acebutolol and alprenolol.


Assuntos
Acebutolol/metabolismo , Alprenolol/metabolismo , Cromatografia Líquida/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Técnicas Eletroquímicas , Espectrometria de Massas/métodos , Acebutolol/farmacocinética , Alprenolol/farmacocinética , Animais , Catálise , Remoção de Radical Alquila , Hidroxilação , Microssomos Hepáticos/metabolismo , Modelos Teóricos , Oxirredução , Ratos
5.
Xenobiotica ; 42(4): 349-54, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22321050

RESUMO

We recently designed the CIME cocktail consisting of 10 drugs to assess the activity of the major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A), a phase II enzyme (UGT1A1/6/9), two drug transporters (P-gp and OATP1B1) and a component of the renal function ( Videau et al. 2010 ). The present work aimed at studying the usefulness of the CIME cocktail in the rat.The CIME cocktail was given per os to three male and three female rats, or incubated with rat liver microsomes. Parent substrates and metabolites were quantified by LC-MS/MS in plasma, urine and hepatic microsomal media, and phenotyping index were subsequently calculated.The CIME cocktail could therefore be used in the rat to phenotype rapidly and simultaneously CYP3A1/2 with omeprazole/omeprazole-sulfone, midazolam/1'-hydroxymidazolam or 4-hydroxymidazolam and/or dextromethorphan/3-methoxymorphinan, CYP2C6/11 with tolbutamide/4-hydroxytolbutamide, CYP2D1/2 with omeprazole/5-hydroxyomeprazole or dextromethorphan/dextrorphan, and UGT1A6/7 with acetaminophen/acetaminophen-glucuronide. Our results confirmed also several known gender differences and brought new information on the urinary excretion of rosuvastatin. However, the major rat CYPs, CYP2C11 and CYP2C12, are not specifically assessed. An optimized version of the CIME cocktail should therefore be designed and would be of major importance to more largely phenotype DMPK enzymes in rats to study DMPK variability factors such as disease, age, or to exposure to inductors or inhibitors.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Farmacocinética , Fenótipo , Animais , Feminino , Humanos , Masculino , Ratos , Fatores Sexuais , Especificidade da Espécie , Espectrometria de Massas em Tandem
6.
Environ Toxicol ; 27(2): 98-108, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20607812

RESUMO

Zearalenone (ZEN) is a lactone derivative of the resorcylic acid produced by various Fusarium species that are widely found in foods and animal feeds. ZEN exerts species-specific estrogenic effects, possibly because of the metabolism differences arising from reduction, hydroxylation, or glucuro-conjugation. The main objective of this study was to determine the levels of expression of rat proteins that are involved in the ZEN detoxification pathway upon acute ZEN treatment. This was achieved by monitoring the mRNA associated with 25 genes using RT-PCR upon ZEN uptake. These genes code for a variety of proteins that are involved in cellular detoxifying pathways, transporters, cytochromes P450 (CYPs), hydroxysteroid dehydrogenases, and transferases, and receptors that are involved in CYP expression or steroid metabolism. Liver samples from rats treated with ZEN were compared to untreated rats or animals treated with classical CYP inducers (phenobarbital, dexamethasone, ß-naphtoflavone, and clofibrate). Significant changes of mRNA expression were observed for the efflux transporter, P-glycoprotein, monooxygenases (CYP2C7, CYP2E1, CYP3A1, CYP3A2, and aromatase), steroid dehydrogenases, and Uridine diphospho-glucuronyl transferases (UGTs). Following a single ZEN treatment, the initial modifications in mRNA levels indicate a close association with microsomal enzyme activity of the CYP2B, CYP2C, and CYP3A protein families.


Assuntos
Estrogênios não Esteroides/toxicidade , Xenobióticos/toxicidade , Zearalenona/toxicidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Estrogênios não Esteroides/metabolismo , Hidroxilação , Inativação Metabólica , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Xenobióticos/metabolismo , Zearalenona/metabolismo
7.
J Occup Environ Hyg ; 9(7): 460-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22702230

RESUMO

In 2009, 100,000 jewelry boxes, manufactured in China, were delivered to a jewelry manufacturer in Besançon, France. All the boxes were contaminated by mold. Because the workers refused to handle these jewelry boxes, the company contacted our laboratory to determine how to deal with the problem. Three choices were available: (1) decontaminate the boxes, (2) return the boxes to the Chinese manufacturer, or (3) destroy the entire shipment. Based on microscopic identification, the culture analysis was positive for A. oryzae. This could not be confirmed by molecular techniques because of the genetic proximity of A. oryzae and A. flavus. Because A. flavus can produce aflatoxins, we tested for them using mass spectrometry. Aflatoxins B1, B2, G1, G2, and M1 were not detected; however, given the specifics of this situation, we could not discard the possibility of the presence of other aflatoxins, such as P1, B3, GM2, and ethoxyaflatoxin B2. We concluded that the contamination by A. oryzae was probably due to food products. However, because of the possible presence of aflatoxins, occupational health risks could not be entirely ruled out. The decision was therefore taken to destroy all the jewelry boxes by incineration. To avoid a similar situation we propose: (1) to maintain conditions limiting mold contamination during production (not eating on the work site, efficient ventilation systems); (2) to desiccate the products before sending them; and (3) to closely control the levels of dampness during storage and transport.


Assuntos
Aflatoxinas/análise , Aspergillus oryzae/isolamento & purificação , Joias , Manufaturas/microbiologia , Exposição Ocupacional/análise , Aspergillus oryzae/metabolismo , Cromatografia Líquida , Humanos , Exposição Ocupacional/prevenção & controle , Espectrometria de Massas em Tandem
8.
Rapid Commun Mass Spectrom ; 25(19): 2704-10, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913247

RESUMO

Mycotoxins are secondary metabolites of filamentous fungi which can cause a wide range of systemic effects. Human health effects of inhaled mycotoxins remain poorly documented, despite the large amounts present, associated with air-borne particles. Among these mycotoxins, sterigmatocystin is one of the most prevalent. Because its chemical structure is close to that of the aflatoxins, we studied its metabolism and its cellular consequences when in contact with the airway epithelium, using the mass spectral signature from the 10% (13)C uniformly enriched sterigmatocystin. The metabolism was studied in vitro, using recombinant cytochrome P450s enzymes, and in porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. The metabolites were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry detection. Expressed enzymes and PTECs were exposed to uniformly (13)C-enriched sterigmatocystin to confirm the relationship between sterigmatocystin and its metabolites because this isotopic cluster shape is conserved for all metabolites and their product ions. Incubation of sterigmatocystin with recombinant cytochrome P450 1A1 led to the formation of three metabolites identified as monohydroxysterigmatocystin, dihydroxysterigmatocystin and one glutathione adduct, the latter after the formation of a transient intermediate. In the PTEC cultures, sterigmatocystin metabolism resulted in a glucuro-conjugate. Two other products were detected, a sulfo-conjugate and a glucuro-conjugate of hydroxysterigmatocystin upon cytochrome P450 1A1 induction. This is the first study to report sterigmatocystin metabolism in airway epithelium, and it suggests that, contrary to the aflatoxins, sterigmatocystin is mainly detoxified into its conjugates and is unable to produce significant amounts of reactive metabolites in respiratory cells, at least in pigs.


Assuntos
Mucosa Respiratória/metabolismo , Esterigmatocistina/metabolismo , Animais , Isótopos de Carbono/análise , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Humanos , Mucosa Respiratória/citologia , Esterigmatocistina/química , Suínos , Espectrometria de Massas em Tandem , Traqueia/citologia , Traqueia/metabolismo
9.
Chem Res Toxicol ; 23(11): 1673-81, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20929267

RESUMO

Human health effects of inhaled mycotoxins remain poorly documented, despite the large amounts present in bioaerosols. Among these mycotoxins, sterigmatocystin is one of the most prevalent. Our aim was to study the metabolism and cellular consequences of sterigmatocystin once it is in contact with the airway epithelium. Metabolites were analyzed first in vitro, using recombinant P450 1A1, 1A2, 2A6, 2A13, and 3A4 enzymes, and subsequently in porcine tracheal epithelial cell (PTEC) primary cultures at an air-liquid interface. Expressed enzymes and PTECs were exposed to sterigmatocystin, uniformly enriched with (13)C to confirm the relationship between sterigmatocystin and metabolites. Induction of the expression of xenobiotic-metabolizing enzymes upon sterigmatocystin exposure was examined by real-time quantitative real-time polymerase chain reaction. Incubation of 50 µM sterigmatocystin with recombinant P450 1A1 led to the formation of three metabolites: monohydroxy-sterigmatocystin (M1), dihydroxy-sterigmatocystin (M2), and one glutathione adduct (M3), the latter after the formation of a transient epoxide. Recombinant P450 1A2 also led to M1 and M3. P450 3A4 led to only M3. In PTEC, 1 µM sterigmatocystin metabolism resulted in a glucuro conjugate (M4) mainly excreted at the basal side of cells. If PTEC were treated with ß-naphthoflavone prior to sterigmatocystin incubation, two other products were detected, i.e., a sulfo conjugate (M5) and a glucoro conjugate (M6) of hydroxy-sterigmatocystin. Exposure of PTEC for 24 h to 1 µM sterigmatocystin induced an 18-fold increase in the mRNA levels of P450 1A1, without significantly induced 7-ethoxyresorufin O-deethylation activity. These data suggest that sterigmatocystin is mainly detoxified and is unable to produce significant amounts of reactive epoxide metabolites in respiratory cells. However, sterigmatocystin increases the P450 1A1 mRNA levels with unknown long-term consequences. These in vitro results obtained in the porcine pulmonary tract need to be confirmed in human epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Esterigmatocistina/metabolismo , Traqueia/citologia , Animais , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Humanos , Inativação Metabólica , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esterigmatocistina/farmacocinética , Esterigmatocistina/toxicidade , Suínos
10.
Rapid Commun Mass Spectrom ; 24(16): 2407-19, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20658680

RESUMO

Phenotyping based on drug metabolism activity appears to be informative regarding mechanism-based interactions during drug development. We report here the first steps of the development of the innovative CIME cocktail. This cocktail is designed not only for the major cytochrome P450, with caffeine, amodiaquine, tolbutamide, omeprazole, dextromethorphan and midazolam as substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A, respectively, but also phase II enzymes UGT 1A1/6/9 with acetaminophen, P-gp and OATP1B1 with digoxin and rosuvastatin, and renal function with memantine. An assay combining ultra-performance liquid chromatography using a 1.7 microm particle size column with tandem mass spectrometry (UPLC/MS/MS) was set up for the simultaneous quantification of the 20 substrates and metabolites after extraction from human plasma using solid-phase extraction. The method was validated in the spirit of the FDA guidelines. Mean accuracy ranged from 87.7 to 115%, the coefficient of variance (CV%) of intra- and inter-run from 1.7 to 16.4% and from 1.6 to 14.9%, respectively, and for the limit of quantification (LOQ) with ten lots of plasma, accuracy ranged from 84 to 115% and CV% precision was <16%. Short-term stability was evaluated in eluate (4 h, room temperature), plasma (24 h, room temperature), the autosampler (24 h, 4 degrees C) and in three freeze/thaw cycles in plasma. All except three analytes were stable under these conditions. For the three others a specific process can be followed. This robust, fast and sensitive assay in human plasma provides an analytical tool for ten-probe drugs of the CIME cocktail. Clinical samples will be assayed in the near future using this new assay method.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/análise , Monitoramento de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Espectrometria de Massas em Tandem/métodos , Sistema Enzimático do Citocromo P-450/sangue , Humanos , Isoenzimas/análise , Isoenzimas/sangue , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Farmacocinética
11.
Int J Mol Sci ; 10(4): 1824-37, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19468341

RESUMO

The mycoestrogen zearalenone (ZEN), as well as its reduced metabolites, which belong to the endocrine disruptor bio-molecule family, are substrates for various enzymes involved in steroid metabolism. In addition to its reduction by the steroid dehydrogenase pathway, ZEN also interacts with hepatic detoxification enzymes, which convert it into hydroxylated metabolites (OH-ZEN). Due to their structures to that of estradiol, ZEN and its derived metabolites bind to the estrogen receptors and are involved in endocrinal perturbations and are possibly associated with estrogen-dependent cancers. The primary aim of this present study was to identify the enzymatic cytochrome P450 isoforms responsible for the formation of the most abundant OH-ZEN. We thus studied its in vitro formation using hepatic microsomes in a range of animal model systems including man. OH-ZEN was also recovered in liver and urine of rats treated orally with ZEN. Finally we compared the activity of ZEN and its active metabolites (alpha-ZAL and OH-ZEN) on estrogen receptors using HeLa ER-alpha and ER-beta reporter cell lines as reporters. OH-ZEN estrogenic activities were revealed to be limited and not as significant as those of ZEN or alpha-ZAL.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Zearalenona/metabolismo , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Células HeLa , Humanos , Hidroxilação , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Modelos Animais , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Zearalenona/análise , Zearalenona/urina
12.
Mol Pharmacol ; 73(4): 1122-33, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18212249

RESUMO

Cyclophosphamide (CPA) is a chemotherapeutic agent that is primarily activated in the liver by cytochrome P4502B6 (CYP2B6) and then transported to the tumor via blood flow. To prevent deleterious secondary effects, P450-based gene-directed enzyme prodrug therapy (GDEPT) consists of expressing CYP2B6 in tumor cells before CPA treatment. Given the relatively low affinity of CYP2B6 for CPA, the aim of our work was to modify CYP2B6 to increase its catalytic efficiency (V(max)/K(m)) to metabolize CPA into 4'-OH CPA. A molecular model of CYP2B6 was built, and four residues in close contact with the substrate were subjected to mutagenesis. Canine CYP2B11 exhibiting a particularly low K(m) to CPA, the amino acids exclusively present in the CYP2B11 substrate recognition sequences were substituted in human CYP2B6. All mutants (n = 26) were expressed in Saccharomyces cerevisiae and their enzymatic constants (K(m), V(max)) evaluated using CPA as substrate. Five mutants exhibited a 2- to 3-fold higher catalytic efficiency than wild-type CYP2B6. A double mutant, comprising the two most effective mutations, showed a 4-fold increase in K(m)/V(max). Molecular dynamic simulations of several mutants were found to be consistent with the observed modifications in catalytic efficiency. Finally, expression of the CYP2B6 114V/477W double mutant, contrary to wt CYP2B6, allowed switching of a resistant human head and neck cancer cell line (A-253) into a sensitive cell line toward CPA. Thus, we were able to obtain a new efficient CYP2B6 mutant able to metabolize CPA, an important step in the GDEPT strategy for human cancer treatment.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Biologia Computacional/métodos , Ciclofosfamida/metabolismo , Proteínas Mutantes/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Pró-Fármacos/metabolismo , Sequência de Aminoácidos , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacologia , Hidrocarboneto de Aril Hidroxilases/química , Sítios de Ligação , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Citocromo P-450 CYP2B6 , Humanos , Hidroxilação/efeitos dos fármacos , Cinética , Ligantes , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Oxirredutases N-Desmetilantes/química , Pró-Fármacos/farmacologia , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência
13.
Front Biosci ; 13: 6893-904, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18508703

RESUMO

In this study, the low molecular weight lypophilic metabolites of C. albicans and C. dubliniensis strains produced in a synthetic medium with the addition of fetal calf serum were identified using LC/MS and MS/MS technique and quantified. All strains investigated produce a metabolite with a UV spectra maximum at 224 and 279 nm and minimum at 243 nm. Following comparison with ESI, MS/MS spectral data of a reference compound, the metabolite was identified as 3-indoleethanol (tryptophol). The concentration of extracellular tryptophol in the biosynthesis of C. albicans and C. dubliniensis ranged from 2.45 microg/mL to 191 microg/mL, respectively. Contrary to previously published data, gliotoxin or gliotoxin-like compounds were not detected, and all investigated C. albicans and C. dubliniensis strains have the same metabolite profile. Cytotoxic effects of tryptophol and 3-indolelactic acid (precursor of tryptophol biosynthesis) were cell-line-dependent. The EC50 of tryptophol ranged between 2 and 7 mM, with the EC50 of 3-indolelactic acid approximately double (between 4 and 8 mM). Tryptophol exhibited cell-type dependent cytotoxicity in relatively high concentrations, with domination of apoptosis.


Assuntos
Candida albicans/química , Micotoxinas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Espectrometria de Massas , Micotoxinas/isolamento & purificação , Necrose
14.
Drug Metab Dispos ; 36(11): 2381-92, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18687804

RESUMO

Phenylahistin is a fungal diketopiperazine derived from isoprenylated (Phe-DeltaHis) cyclodipeptide. The (-)-enantiomer is a cell cycle inhibitor, which can be potentially used as an antitumor agent. By contrast, the (+)-enantiomer exhibits no antimicrotubule activity. To better understand the differences that could arise from a difference of bioavailability, we investigated the interaction and metabolism of both enantiomers with mammalian cytochromes P450 (P450s). We found that both enantiomers were metabolized by various isoforms of mammal P450 with a noticeable activity for the (+)-enantiomer. P450 3A isoforms were mainly responsible for this metabolism, the bioactive (-)-enantiomer being 1.5 to 8 times less metabolized than the (+)-enantiomer. Spectral analysis of the interaction with P450s revealed that (-)-phenylahistin led to a hydrophobic type I signature, whereas the (+)-isomer yielded a Fe-N type II one. Structural analysis of metabolites by liquid chromatography-tandem mass spectrometry allowed us to characterize two major metabolites (P1 and P3) for both enantiomers. In human liver microsomal preparations, P1 was predominant in the (-)-phenylahistin metabolic profile. In contrast, (+)-phenylahistin mainly produced P3 in human microsomes and CYP3A human expressed P450s. (-)-Phenylahistin proved to be less toxic on P450-rich hepatocytes than on P450-deprived KB lines. The slower metabolism of this enantiomer could account for its higher toxicity. This is strengthened by the fact that isolated metabolites of (-)-phenylahistin showed no toxic effects toward KB lines. Finally, differences of metabolism and interaction mode between both phenylahistin enantiomers and CYP3A4 were supported by in silico molecular docking calculations.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Piperazinas/metabolismo , Piperazinas/toxicidade , Domínio Catalítico , Citocromo P-450 CYP3A/química , Dicetopiperazinas , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Piperazinas/química , Estereoisomerismo
15.
BMC Microbiol ; 7: 5, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17244350

RESUMO

BACKGROUND: The role of Aspergillus fumigatus mycotoxins in the colonization of the respiratory tract by conidia has not been studied extensively, even though patients at risk from invasive aspergillosis frequently exhibit respiratory epithelium damage. In a previous study, we found that filtrates of A. fumigatus cultures can specifically alter the electrophysiological properties of human nasal epithelial cells (HNEC) compared to those of non pathogenic moulds. RESULTS: We fractionated the organic phase of filtrate from 3-day old A. fumigatus cultures using high-performance liquid chromatography. The different fractions were tested for their ability to modify the electrophysiological properties of HNEC in an in vitro primary culture model. The fraction collected between 20 and 30 min mimicked the effects of the whole filtrate, i.e. decrease of transepithelial resistance and increase of potential differences, and contained secondary metabolites such as helvolic acid, fumagillin, and verruculogen. Only verruculogen (10(-8) M) had effects similar to the whole filtrate. We verified that verruculogen was produced by a collection of 67 human, animal, plant and environmental A. fumigatus isolates. Using MS-MS analysis, we found that verruculogen was associated with both mycelium and conidia extracts. CONCLUSION: Verruculogen is a secondary metabolite that modifies the electrophysiological properties of HNEC. The role of these modifications in the colonization and invasion of the respiratory epithelium by A. fumigatus on first contact with the epithelium remains to be determined.


Assuntos
Aspergillus fumigatus/metabolismo , Indóis/farmacologia , Micotoxinas/farmacologia , Mucosa Nasal/efeitos dos fármacos , Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/fisiologia , Células Cultivadas , Impedância Elétrica , Humanos , Hifas/metabolismo , Indóis/análise , Micotoxinas/análise , Mucosa Nasal/microbiologia , Mucosa Nasal/fisiologia , Esporos Fúngicos/metabolismo
16.
Int J Food Microbiol ; 115(2): 131-9, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17169453

RESUMO

Byssochlamys species are responsible for spoilage and degradation of fruits and silages. Under specific conditions they are able to produce mycotoxins. The aim of this study was to evaluate the potential of 19 different strains of Byssochlamys nivea and Byssochlamys fulva to produce patulin in relation with the presence of two genes involved in the patulin biosynthesis pathways in the genome of these fungal strains. The strains were characterized by macroscopic, microscopic examinations, internal transcribed spacer (ITS) rRNA and beta-tubulin fragment amplification and sequencing. All of the 8 B. nivea strains tested produced patulin. By contrast, none of the 11 strains of B. fulva produce this toxin. Two genes of the patulin biosynthetic pathway, a polyketide synthase (pks) and the isoepoxydon dehydrogenase (idh) were cloned from B. nivea. The deduced amino acid sequence of the polyketide synthase was 74% identical to the 6-methylsalicylic acid synthase gene of Penicillium griseofulvum and had the five functional domains characteristic of fungal type I polyketide synthases (beta-ketosynthase, acyltransferase, dehydratase, beta-ketoreductase and acyl carrier protein). The complete coding sequence of idh gene displayed after translation 88% of identity with P. griseofulvum IDH and 85% with P. expansum IDH, respectively. Both pks and idh messengers were strongly co-expressed during the production of 6-methylsalicylic acid and patulin. The presence of these genes was then investigated in the genome of B. nivea and B. fulva strains by PCR. All B. nivea strains possess the two genes, by contrast none of the B. fulva strains display these genes. The absence of 6-methylsalicylic acid and isoepoxydon dehydrogenase genes can explain the inability of B. fulva to produce patulin. In conclusion, B. fulva don't seem to be responsible for the occurrence of patulin by lack of genes.


Assuntos
Aciltransferases/genética , DNA Fúngico/análise , Eurotiales/enzimologia , Genes Fúngicos , Ligases/genética , Complexos Multienzimáticos/genética , Oxirredutases/genética , Patulina/biossíntese , Sequência de Aminoácidos , Eurotiales/metabolismo , Contaminação de Alimentos , Microbiologia de Alimentos , Dados de Sequência Molecular , Penicillium/enzimologia , Penicillium/metabolismo , Policetídeo Sintases/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
17.
Artigo em Inglês | MEDLINE | ID: mdl-28351740

RESUMO

Industrial applications of fungal compounds, coupled with the emergence of fungal threats to natural ecosystems and public health, have increased interest in filamentous fungi. Among all pathogenic fungi, Penicillium verrucosum is one of the most common mold-infecting stored cereals in temperate regions. However, it is estimated that 80% of fungal secondary metabolites remain unknown. To detect new P. verrucosum compounds, an untargeted metabolomic approach was applied to fungus grown on wheat grains labeled with stable isotopes: (i) natural grains (99% 12C); (ii) grains enriched with 97% of 13C; and (iii) grains enriched with 53% of 13C and 97% of 15N. Analyses performed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) enabled the specific detection of fungal metabolites, and the unambiguous characterization of their chemical formulas. In this way, 98 secondary metabolites were detected and their chemical formulas were determined. Of these, only 18 identifications could be made based on databases, the literature and mass spectrometry fragmentation experiments, with the result that 80 were totally unknown. Molecular networks were generated to analyze these results, leading to the characterization by MSn experiments of a new fungisporin produced by P. verrucosum. More generally, this article provides precise mass spectrometric data about all these compounds for further studies of the Penicillium metabolome.


Assuntos
Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Penicillium/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Penicillium/química
18.
Mol Cancer Res ; 15(10): 1376-1387, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28634226

RESUMO

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and accounts for a significant proportion of all primary brain tumors. Median survival after treatment is around 15 months. Remodeling of N-glycans by the N-acetylglucosamine glycosyltransferase (MGAT5) regulates tumoral development. Here, perturbation of MGAT5 enzymatic activity by the small-molecule inhibitor 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl2-oxo-2λ5-[1,2]oxaphosphinane (PST3.1a) restrains GBM growth. In cell-based assays, it is demonstrated that PST3.1a alters the ß1,6-GlcNAc N-glycans of GBM-initiating cells (GIC) by inhibiting MGAT5 enzymatic activity, resulting in the inhibition of TGFßR and FAK signaling associated with doublecortin (DCX) upregulation and increase oligodendrocyte lineage transcription factor 2 (OLIG2) expression. PST3.1a thus affects microtubule and microfilament integrity of GBM stem cells, leading to the inhibition of GIC proliferation, migration, invasiveness, and clonogenic capacities. Orthotopic graft models of GIC revealed that PST3.1a treatment leads to a drastic reduction of invasive and proliferative capacity and to an increase in overall survival relative to standard temozolomide therapy. Finally, bioinformatics analyses exposed that PST3.1a cytotoxic activity is positively correlated with the expression of genes of the epithelial-mesenchymal transition (EMT), while the expression of mitochondrial genes correlated negatively with cell sensitivity to the compound. These data demonstrate the relevance of targeting MGAT5, with a novel anti-invasive chemotherapy, to limit glioblastoma stem cell invasion. Mol Cancer Res; 15(10); 1376-87. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Óxidos P-Cíclicos/administração & dosagem , Glioblastoma/tratamento farmacológico , N-Acetilglucosaminiltransferases/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Óxidos P-Cíclicos/farmacologia , Proteína Duplacortina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Biotechnol ; 58(4): 299-310, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26961909

RESUMO

Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.


Assuntos
Clonagem Molecular/métodos , Citocromo P-450 CYP3A/metabolismo , Expressão Gênica , Glutationa Transferase/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Animais , Citocromo P-450 CYP3A/genética , Glutationa Transferase/genética , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Fígado/enzimologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Eur J Drug Metab Pharmacokinet ; 41(2): 125-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25465228

RESUMO

This phase I, pilot clinical study was designed to evaluate the safety and the pharmacokinetic (PK) profiles of the CIME (Metabolic Identity Card) combination of ten drugs, with a view to its use as a phenotyping cocktail. Ten healthy Caucasian subjects were orally dosed with the CIME combination (caffeine-CYP1A2, repaglinide-CYP2C8, tolbutamide-CYP2C9, omeprazole-CYP2C19, dextromethorphan-CYP2D6, midazolam-CYP3A, acetaminophen-UGT1A1, 6&9 and 2B15, digoxin-P-gp, rosuvastatin-OATP1B1&3 and memantine-active renal transport). Blood was collected over 3 days and on day 7. CIME probes and relevant metabolites were assayed by LC-MS/MS and PK parameters were calculated. Main results were: (1) good safety with reversible mild or moderate adverse effects, (2) an analytical method able to quantify simultaneously the 10 probes and the major metabolites, (3) calculation of PK parameters for all probes in general agreed with published values, and (4) identification of the low CYP2D6 metabolizer. This pilot study showed that the CIME combination was well tolerated and that its pharmacokinetics could be accurately measured in healthy volunteers. This combination can now confidently be checked for sensitivity and specificity and for lack of interaction to be validated as a phenotyping cocktail.


Assuntos
Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Administração Oral , Adulto , Sistema Enzimático do Citocromo P-450/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa