Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7041, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580694

RESUMO

Data science is a powerful field for gaining insights, comparing, and predicting behaviors from datasets. However, the diversity of methods and hypotheses needed to abstract a dataset exhibits a lack of genericity. Moreover, the shape of a dataset, which structures its contained information and uncertainties, is rarely considered. Inspired by state-of-the-art manifold learning and hull estimations algorithms, we propose a novel framework, the datascape, that leverages topology and graph theory to abstract heterogeneous datasets. Built upon the combination of a nearest neighbor graph, a set of convex hulls, and a metric distance that respects the shape of the data, the datascape allows exploration of the dataset's underlying space. We show that the datascape can uncover underlying functions from simulated datasets, build predictive algorithms with performance close to state-of-the-art algorithms, and reveal insightful geodesic paths between points. It demonstrates versatility through ecological, medical, and simulated data use cases.

2.
Sci Rep ; 10(1): 6074, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269239

RESUMO

While Ocean modeling has made significant advances over the last decade, its complex biological component is still oversimplified. In particular, modeling organisms in the ocean system must integrate parameters to fit both physiological and ecological behaviors that are together very difficult to determine. Such difficulty occurs for modeling Pelagia noctiluca. This jellyfish has a high abundance in the Mediterranean Sea and could contribute to several biogeochemical processes. However, gelatinous zooplanktons remain poorly represented in biogeochemical models because uncertainties about their ecophysiology limit our understanding of their potential role and impact. To overcome this issue, we propose, for the first time, the use of the Statistical Model Checking Engine (SMCE), a probability-based computational framework that considers a set of parameters as a whole. Contrary to standard parameter inference techniques, SMCE identifies sets of parameters that fit both laboratory-culturing observations and in situ patterns while considering uncertainties. Doing so, we estimated the best parameter sets of the ecophysiological model that represents the jellyfish growth and degrowth in laboratory conditions as well as its size. Behind this application, SMCE remains a computational framework that supports the projection of a model with uncertainties in broader contexts such as biogeochemical processes to drive future studies.


Assuntos
Biomassa , Cifozoários/fisiologia , Distribuição Animal , Animais , Tamanho Corporal , Modelos Estatísticos , Cifozoários/crescimento & desenvolvimento , Incerteza , Zooplâncton/fisiologia
3.
mSystems ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238753

RESUMO

For decades, microbiologists have considered uncertainties as an undesired side effect of experimental protocols. As a consequence, standard microbial system modeling strives to hide uncertainties for the sake of deterministic understanding. However, recent studies have highlighted greater experimental variability than expected and emphasized uncertainties not as a weakness but as a necessary feature of complex microbial systems. We therefore advocate that biological uncertainties need to be considered foundational facets that must be incorporated in models. Not only will understanding these uncertainties improve our understanding and identification of microbial traits, it will also provide fundamental insights on microbial systems as a whole. Taking into account uncertainties within microbial models calls for new validation techniques. Formal verification already overcomes this shortcoming by proposing modeling frameworks and validation techniques dedicated to probabilistic models. However, further work remains to extract the full potential of such techniques in the context of microbial models. Herein, we demonstrate how statistical model checking can enhance the development of microbial models by building confidence in the estimation of critical parameters and through improved sensitivity analyses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa