Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 143(10): 2957-2972, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893288

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease characterized by an antibody-mediated autoimmune response against NMDAR. Recent studies have shown that anti-NMDAR antibodies are involved in the pathophysiology of the disease. However, the upstream immune and inflammatory processes responsible for this pathogenic response are still poorly understood. Here, we immunized mice against the region of NMDA receptor containing the N368/G369 amino acids, previously implicated in a pathogenic response. This paradigm induced encephalopathy characterized by blood-brain barrier opening, periventricular T2-MRI hyperintensities and IgG deposits into the brain parenchyma. Two weeks after immunization, mice developed clinical symptoms reminiscent of encephalitis: anxiety- and depressive-like behaviours, spatial memory impairment (without motor disorders) and increased sensitivity to seizures. This response occurred independently of overt T-cell recruitment. However, it was associated with B220+ (B cell) infiltration towards the ventricles, where they differentiated into CD138+ cells (plasmocytes). Interestingly, these B cells originated from peripheral lymphoid organs (spleen and cervical lymphoid nodes). Finally, blocking the B-cell response using a depleting cocktail of antibodies reduced the severity of symptoms in encephalitis mice. This study demonstrates that the B-cell response can lead to an autoimmune reaction against NMDAR that drives encephalitis-like behavioural impairments. It also provides a relevant platform for dissecting encephalitogenic mechanisms in an animal model, and enables the testing of therapeutic strategies targeting the immune system in anti-NMDAR encephalitis.


Assuntos
Autoanticorpos/sangue , Linfócitos B/metabolismo , Encefalite/sangue , Doença de Hashimoto/sangue , Proteínas do Tecido Nervoso/toxicidade , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Encefalite/induzido quimicamente , Encefalite/imunologia , Doença de Hashimoto/induzido quimicamente , Doença de Hashimoto/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Receptores de N-Metil-D-Aspartato/imunologia
2.
Stroke ; 48(9): 2574-2582, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28754830

RESUMO

BACKGROUND AND PURPOSE: Although the mechanisms that contribute to intracranial aneurysm (IA) formation and rupture are not totally elucidated, inflammation and matrix remodeling are incriminated. Because tPA (tissue-type plasminogen activator) controls both inflammatory and matrix remodeling processes, we hypothesized that tPA could be involved in the pathophysiology of IA. METHODS: Immunofluorescence analyses of tPA and its main substrate within the aneurysmal wall of murine and human samples were performed. We then compared the formation and rupture of IAs in wild-type, tPA-deficient and type 1 plasminogen activator inhibitor-deficient mice subjected to a model of elastase-induced IA. The specific contribution of vascular versus global tPA was investigated by performing hepatic hydrodynamic transfection of a cDNA encoding for tPA in tPA-deficient mice. The formation and rupture of IAs were monitored by magnetic resonance imaging tracking for 28 days. RESULTS: Immunofluorescence revealed increased expression of tPA within the aneurysmal wall. The number of aneurysms and their symptomatic ruptures were significantly lower in tPA-deficient than in wild-type mice. Conversely, they were higher in plasminogen activator inhibitor-deficient mice. The wild-type phenotype could be restored in tPA-deficient mice by selectively increasing circulating levels of tPA via hepatic hydrodynamic transfection of a cDNA encoding for tPA. CONCLUSIONS: Altogether, this preclinical study demonstrates that the tPA present in the blood stream is a key player of the formation of IAs. Thus, tPA should be considered as a possible new target for the prevention of IAs formation and rupture.


Assuntos
Aneurisma Roto/metabolismo , Aneurisma Intracraniano/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Adulto , Aneurisma Roto/diagnóstico por imagem , Animais , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Aneurisma Intracraniano/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/genética , Ruptura Espontânea , Ativador de Plasminogênio Tecidual/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa