RESUMO
Hepatitis delta virus (HDV) is an obligate satellite of hepatitis B virus (HBV). Dual HDV/HBV infection is associated with down-regulated HBV replication and fast progression to severe liver disease. Although HDV is transmissible through exposure to infected blood, data about HDV infection in blood donors remain scarce. Between 2011 and 2021, 869,633 donations were collected from prequalified donors in Dalian, China. In total, 1060 (0.12%) were confirmed HBsAg and/or HBV DNA-reactive. Subsequently, anti-HDV IgG was tested in 2175 donations, including 65 that tested HBsAg+ pre donation, 1017 confirmed HBV-positive (507 HBsAg+/HBV DNA+, 33 HBsAg+/DNA-, 477 HBsAg-/DNA+ (451 occult (OBI) and 26 acute infections)), 327 viral DNA non-repeated-reactive, 397 anti-HBc-only, and 369 anti-HBs-only. Two (0.09%) samples tested anti-HDV IgG weakly reactive but were unconfirmed by IgM and IgG repeat testing with alternative assays, suggesting an initial false reactivity. In addition, HDV testing in a subgroup of confirmed OBI donors, comprising 451 donors from Dalian and 126 archived samples of OBI donors from around the world, showed only one non-Chinese donor to be repeatedly anti-HDV-reactive, suggesting that HDV/HBV coinfection does not play a significant role in the genesis of OBI. The overall data suggested an extremely low prevalence of HDV infection among blood donors in Liaoning province, Northeast China.
Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Antígenos de Superfície da Hepatite B , Vírus Delta da Hepatite/genética , Doadores de Sangue , DNA Viral/genética , Vírus da Hepatite B/genética , Anticorpos Anti-Hepatite B , China/epidemiologia , Imunoglobulina GRESUMO
Over the past few decades, studies on the red blood cell (RBC) membrane gave rise to increasingly sophisticated although divergent models of its structural organization, since investigations were often performed in denaturing conditions using detergents. To access soluble isolated RBC membrane complexes with the preservation of their interactions and conformations, we decided to apply the recent SMALP (Styrene Maleic Acid Lipid Particles) technology to RBC ghosts. Depending on the ionic strength of buffers in which ghost membranes were resuspended, the isolated proteins within SMALPs could differ on Coomassie-stained gels, but with few changes when compared to ghost membrane SDS lysates. We subsequently produced SMALPs derived from ghosts from two different blood group phenotypes, RhD-positive and RhD-negative, both types of RBC expressing the RhCE proteins but only RhD-positive cells being able to express the RhD proteins. This allowed the isolation, by size exclusion chromatography (SEC), of soluble fractions containing the Rh complex, including the RhD protein or not, within SMALPs. The use a conformation-dependent anti-RhD antibody in immunoprecipitation studies performed on SEC fractions of SMALPs containing Rh proteins clearly demonstrated that the RhD protein, which was only present in SMALPs prepared from RhD-positive RBC ghosts, has preserved at least one important conformational RhD epitope. This approach opens new perspectives in the field of the erythroid membrane study, such as visualization of RBC membrane complexes in native conditions by cryo-electron microscopy (CryoEM) or immuno-tests with conformation-dependent antibodies against blood group antigens on separated and characterized SMALPs containing RBC membrane proteins.