Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 572(7771): 614-619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435015

RESUMO

Branched-chain amino acid (BCAA; valine, leucine and isoleucine) supplementation is often beneficial to energy expenditure; however, increased circulating levels of BCAA are linked to obesity and diabetes. The mechanisms of this paradox remain unclear. Here we report that, on cold exposure, brown adipose tissue (BAT) actively utilizes BCAA in the mitochondria for thermogenesis and promotes systemic BCAA clearance in mice and humans. In turn, a BAT-specific defect in BCAA catabolism attenuates systemic BCAA clearance, BAT fuel oxidation and thermogenesis, leading to diet-induced obesity and glucose intolerance. Mechanistically, active BCAA catabolism in BAT is mediated by SLC25A44, which transports BCAAs into mitochondria. Our results suggest that BAT serves as a key metabolic filter that controls BCAA clearance via SLC25A44, thereby contributing to the improvement of metabolic health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético , Homeostase , Proteínas Mitocondriais/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Animais , Temperatura Baixa , Intolerância à Glucose/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo
2.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
3.
Am J Physiol Endocrinol Metab ; 318(2): E216-E223, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794262

RESUMO

Elevations in circulating levels of branched-chain amino acids (BCAAs) are associated with a variety of cardiometabolic diseases and conditions. Restriction of dietary BCAAs in rodent models of obesity lowers circulating BCAA levels and improves whole-animal and skeletal-muscle insulin sensitivity and lipid homeostasis, but the impact of BCAA supply on heart metabolism has not been studied. Here, we report that feeding a BCAA-restricted chow diet to Zucker fatty rats (ZFRs) causes a shift in cardiac fuel metabolism that favors fatty acid relative to glucose catabolism. This is illustrated by an increase in labeling of acetyl-CoA from [1-13C]palmitate and a decrease in labeling of acetyl-CoA and malonyl-CoA from [U-13C]glucose, accompanied by a decrease in cardiac hexokinase II and glucose transporter 4 protein levels. Metabolomic profiling of heart tissue supports these findings by demonstrating an increase in levels of a host of fatty-acid-derived metabolites in hearts from ZFRs and Zucker lean rats (ZLRs) fed the BCAA-restricted diet. In addition, the twofold increase in cardiac triglyceride stores in ZFRs compared with ZLRs fed on chow diet is eliminated in ZFRs fed on the BCAA-restricted diet. Finally, the enzymatic activity of branched-chain ketoacid dehydrogenase (BCKDH) is not influenced by BCAA restriction, and levels of BCAA in the heart instead reflect their levels in circulation. In summary, reducing BCAA supply in obesity improves cardiac metabolic health by a mechanism independent of alterations in BCKDH activity.


Assuntos
Aminoácidos de Cadeia Ramificada/deficiência , Dieta , Miocárdio/metabolismo , Obesidade/metabolismo , Triglicerídeos/metabolismo , Acetilcoenzima A/metabolismo , Aminoácidos de Cadeia Ramificada/sangue , Animais , Glucose/metabolismo , Masculino , Malonil Coenzima A/metabolismo , Metabolômica , Palmitatos/metabolismo , Proteínas Quinases/metabolismo , Ratos , Ratos Zucker
4.
J Hepatol ; 70(5): 963-973, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677458

RESUMO

BACKGROUND & AIMS: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)α, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPARα in the response to sepsis. METHODS: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific Ppara-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPARα expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters. RESULTS: Both whole body and non-hematopoietic Ppara-deficiency in mice decreased survival upon bacterial infection. Livers of septic Ppara-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPARα impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPARA expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers. CONCLUSION: During sepsis, Ppara-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPARα in hepatocytes plays a key role in the host defense against infection. LAY SUMMARY: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPARα in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes.


Assuntos
Adaptação Fisiológica , Fígado/metabolismo , PPAR alfa/fisiologia , Sepse/metabolismo , Animais , Infecções Bacterianas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797133

RESUMO

Hepatic de novo lipogenesis is influenced by the branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BCKDK). Here, we aimed to determine whether circulating levels of the immediate substrates of BCKDH, the branched-chain α-keto acids (BCKAs), and hepatic BCKDK expression are associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD). Eighty metabolites (3 BCKAs, 14 amino acids, 43 acylcarnitines, 20 ceramides) were quantified in plasma from 288 patients with bariatric surgery with severe obesity and scored liver biopsy samples. Metabolite principal component analysis factors, BCKAs, branched-chain amino acids (BCAAs), and the BCKA/BCAA ratio were tested for associations with steatosis grade and presence of nonalcoholic steatohepatitis (NASH). Of all analytes tested, only the Val-derived BCKA, α-keto-isovalerate, and the BCKA/BCAA ratio were associated with both steatosis grade and NASH. Gene expression analysis in liver samples from 2 independent bariatric surgery cohorts showed that hepatic BCKDK mRNA expression correlates with steatosis, ballooning, and levels of the lipogenic transcription factor SREBP1. Experiments in AML12 hepatocytes showed that SREBP1 inhibition lowered BCKDK mRNA expression. These findings demonstrate that higher plasma levels of BCKA and hepatic expression of BCKDK are features of human NAFLD/NASH and identify SREBP1 as a transcriptional regulator of BCKDK.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Aminoácidos de Cadeia Ramificada/metabolismo , Humanos , Cetoácidos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , RNA Mensageiro
6.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320000

RESUMO

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Resistência à Insulina/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/metabolismo
7.
Diab Vasc Dis Res ; 14(6): 516-524, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28868898

RESUMO

The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Obesidade/metabolismo , Células-Tronco/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Adiposidade , Adulto , Idoso , Animais , Transplante de Medula Óssea , Estudos de Casos e Controles , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Feminino , Genótipo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/patologia , Obesidade/fisiopatologia , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Interferência de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Rosiglitazona , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa