Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396833

RESUMO

Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.


Assuntos
Bradyrhizobium , Poli-Hidroxialcanoatos , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163408

RESUMO

The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.


Assuntos
Bradyrhizobium/metabolismo , Glycine max/microbiologia , Gases de Efeito Estufa/metabolismo , Óxido Nitroso/metabolismo , Simbiose
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328804

RESUMO

Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.


Assuntos
Bradyrhizobium , Cobre , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Desnitrificação/genética , Nitratos/metabolismo , Nitratos/farmacologia , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Óxidos de Nitrogênio/metabolismo , Solo
4.
Environ Microbiol ; 23(10): 6194-6209, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34227211

RESUMO

The FixK2 protein plays a pivotal role in a complex regulatory network, which controls genes for microoxic, denitrifying, and symbiotic nitrogen-fixing lifestyles in Bradyrhizobium diazoefficiens. Among the microoxic-responsive FixK2 -activated genes are the fixNOQP operon, indispensable for respiration in symbiosis, and the nnrR regulatory gene needed for the nitric-oxide dependent induction of the norCBQD genes encoding the denitrifying nitric oxide reductase. FixK2 is a CRP/FNR-type transcription factor, which recognizes a 14 bp-palindrome (FixK2 box) at the regulated promoters through three residues (L195, E196, and R200) within a C-terminal helix-turn-helix motif. Here, we mapped the determinants for discriminatory FixK2 -mediated regulation. While R200 was essential for DNA binding and activity of FixK2 , L195 was involved in protein-DNA complex stability. Mutation at positions 1, 3, or 11 in the genuine FixK2 box at the fixNOQP promoter impaired transcription activation by FixK2 , which was residual when a second mutation affecting the box palindromy was introduced. The substitution of nucleotide 11 within the NnrR box at the norCBQD promoter allowed FixK2 -mediated activation in response to microoxia. Thus, position 11 within the FixK2 /NnrR boxes constitutes a key element that changes FixK2 targets specificity, and consequently, it might modulate B. diazoefficiens lifestyle as nitrogen fixer or as denitrifier.


Assuntos
Bradyrhizobium , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , DNA/metabolismo
5.
Horm Behav ; 117: 104609, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647920

RESUMO

The objective of this study was to investigate the role of palmitoylethanolamide (PEA) in the regulation of energy homeostasis in goldfish (Carassius auratus). We examined the effects of acute or chronic intraperitoneal treatment with PEA (20 µg·g-1 body weight) on parameters related to food intake and its regulatory mechanisms, locomotor activity, glucose and lipid metabolism, and the possible involvement of transcription factors and clock genes on metabolic changes in the liver. Acute PEA treatment induced a decrease in food intake at 6 and 8 h post-injection, comparable to that observed in mammals. This PEA anorectic effect in goldfish could be mediated through interactions with leptin and NPY, as PEA increased hepatic expression of leptin aI and reduced hypothalamic expression of npy. The PEA chronic treatment reduced weight gain, growth rate, and locomotor activity. The rise in glycolytic potential together with the increased potential of glucose to be transported into liver suggests an enhanced use of glucose in the liver after PEA treatment. In addition, part of glucose may be exported to be used in other tissues. The activity of fatty acid synthase (FAS) increased after chronic PEA treatment, suggesting an increase in the hepatic lipogenic capacity, in contrast with the mammalian model. Such lipogenic increment could be linked with the PEA-induction of REV-ERBα and BMAL1 found after the chronic treatment. As a whole, the present study shows the actions of PEA in several compartments related to energy homeostasis and feeding behavior, supporting a regulatory role for this N-acylethanolamine in fish.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Etanolaminas/farmacologia , Carpa Dourada/metabolismo , Homeostase/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Amidas , Animais , Peso Corporal/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Etanolaminas/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraperitoneais , Leptina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Ácidos Palmíticos/administração & dosagem , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Aumento de Peso/efeitos dos fármacos
6.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R304-R312, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070504

RESUMO

Nocturnin (NOC) is a unique deadenylase with robust rhythmic expression involved in the regulation of metabolic processes in mammals. Currently, the possible presence of NOC in fish is unknown. This report aimed to identify NOC in a fish model, the goldfish ( Carassius auratus), and to study the possible regulation of its expression by feeding. Two partial-length cDNAs of 293 and 223 bp, named nocturnin-a ( noc-a) and nocturnin-b ( noc-b), were identified and found to be highly conserved among vertebrates. Both mRNAs show a similar widespread distribution in central and peripheral tissues, with higher levels detected for noc-a compared with noc-b. The periprandial expression profile revealed that noc-a mRNAs rise sharply after a meal in hypothalamus, intestinal bulb, and liver, whereas almost no changes were observed for noc-b. Food deprivation was found to exert opposite effects on the expression of both NOCs (generally inhibitory for noc-a, and stimulatory for noc-b) in the three mentioned tissues. A single meal after a 48-h food deprivation period reversed (totally or partially) the fasting-induced decreases in noc-a transcripts in all studied tissues and the increases in noc-b expression in the intestinal bulb. Together, this study offers the first report of NOC in fish and shows a high dependence of its expression on feeding and nutritional status. The differential responses to feeding of the two NOCs raise the possibility that they might be underlying different physiological mechanisms (e.g., food intake, lipid mobilization, energy homeostasis) in fish.


Assuntos
Ingestão de Alimentos , Proteínas de Peixes/metabolismo , Carpa Dourada/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Jejum/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Carpa Dourada/genética , Proteínas Nucleares/genética , Estado Nutricional , Período Pós-Prandial , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética
7.
J Exp Bot ; 69(15): 3703-3714, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29701804

RESUMO

Nitric oxide (NO) is a signaling molecule with multiple functions in plants. Given its critical importance and reactivity as a gaseous free radical, we have examined NO production in legume nodules using electron paramagnetic resonance (EPR) spectroscopy and the specific fluorescent dye 4,5-diaminofluorescein diacetate. Also, in this context, we critically assess previous and current views of NO production and detection in nodules. EPR of intact nodules revealed that nitrosyl-leghemoglobin (Lb2+NO) was absent from bean or soybean nodules regardless of nitrate supply, but accumulated in soybean nodules treated with nitrate that were defective in nitrite or nitric oxide reductases or that were exposed to ambient temperature. Consequently, bacteroids are a major source of NO, denitrification enzymes are required for NO homeostasis, and Lb2+NO is not responsible for the inhibition of nitrogen fixation by nitrate. Further, we noted that Lb2+NO is artifactually generated in nodule extracts or in intact nodules not analyzed immediately after detachment. The fluorescent probe detected NO formation in bean and soybean nodule infected cells and in soybean nodule parenchyma. The NO signal was slightly decreased by inhibitors of nitrate reductase but not by those of nitric oxide synthase, which could indicate a minor contribution of plant nitrate reductase and supports the existence of nitrate- and arginine-independent pathways for NO production. Together, our data indicate that EPR and fluorometric methods are complementary to draw reliable conclusions about NO production in plants.


Assuntos
Fabaceae/metabolismo , Leghemoglobina/metabolismo , Óxido Nítrico/metabolismo , Fixação de Nitrogênio , Espectroscopia de Ressonância de Spin Eletrônica , Corantes Fluorescentes , Nódulos Radiculares de Plantas/metabolismo , Simbiose
8.
Nitric Oxide ; 68: 137-149, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28167162

RESUMO

Expression of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes requires low oxygen (O2) tension and nitrate (NO3-), through a regulatory network comprised of two coordinated cascades, FixLJ-FixK2-NnrR and RegSR-NifA. To precisely understand how these signals are integrated in the FixLJ-FixK2-NnrR circuit, we analyzed ß-Galactosidase activities from napE-lacZ, nirK-lacZ and norC-lacZ fusions, and performed analyses of NapC and NorC levels as well as periplasmic nitrate reductase (Nap) activity, in B. japonicum wildtype and fixK2 and nnrR mutant backgrounds. While microoxic conditions (2% O2 at headspace) were sufficient to induce expression of napEDABC and nirK genes and this control depends on FixK2, norCBQD expression requires, in addition to microoxia, nitric oxide gas (NO) and both FixK2 and NnrR transcription factors. Purified FixK2 protein directly interacted and activated transcription in collaboration with B. japonicum RNA polymerase (RNAP) from the napEDABC and nirK promoters, but not from the norCBQD promoter. Further, recombinant NnrR protein bound exclusively to the norCBQD promoter in an O2-sensitive manner. Our work suggest a disparate regulation of B. japonicum denitrifying genes expression with regard to their dependency to microoxia, nitrogen oxides (NOx), and the regulatory proteins FixK2 and NnrR. In this control, expression of napEDABC and nirK genes requires microoxic conditions and directly depends on FixK2, while expression of norCBQD genes relies on NO, being NnrR the candidate which directly interacts with the norCBQD promoter.


Assuntos
Bradyrhizobium/genética , Genes Bacterianos/genética , Óxidos de Nitrogênio/metabolismo , Oxigênio/metabolismo , Bradyrhizobium/metabolismo , Desnitrificação/genética
9.
J Exp Biol ; 220(Pt 7): 1295-1306, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28126833

RESUMO

The liver is the most important link between the circadian system and metabolism. As a food-entrainable oscillator, the hepatic clock needs to be entrained by food-related signals. The objective of the present study was to investigate the possible role of ghrelin (an orexigenic peptide mainly synthesized in the gastrointestinal tract) as an endogenous synchronizer of the liver oscillator in teleosts. To achieve this aim, we first examined the presence of ghrelin receptors in the liver of goldfish. Then, the ghrelin regulation of clock gene expression in the goldfish liver was studied. Finally, the possible involvement of the phospholipase C/protein kinase C (PLC/PKC) and adenylate cyclase/protein kinase A (AC/PKA) intracellular signalling pathways was investigated. Ghrelin receptor transcripts, ghs-r1a, are present in the majority of goldfish hepatic cells. Ghrelin induced the mRNA expression of the positive (gbmal1a, gclock1a) and negative (gper genes) elements of the main loop of the molecular clock machinery, as well as grev-erbα (auxiliary loop) in cultured liver. These effects were blocked, at least in part, by a ghrelin antagonist. Incubation of liver with a PLC inhibitor (U73122), a PKC activator (phorbol 12-myristate 13-acetate) and a PKC inhibitor (chelerythrine chloride) demonstrated that the PLC/PKC pathway mediates such ghrelin actions. Experiments with an AC activator (forskolin) and a PKA inhibitor (H89) showed that grev-erbα regulation could be due to activation of PKA. Taken together, the present results show for the first time in vertebrates a direct action of ghrelin on hepatic clock genes and support a role for this hormone as a temporal messenger in the entrainment of liver circadian functions.


Assuntos
Proteínas CLOCK/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Grelina/metabolismo , Carpa Dourada/fisiologia , Proteína Quinase C/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica , Carpa Dourada/genética , Fígado/citologia , Fígado/fisiologia , Receptores de Grelina/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
10.
Antonie Van Leeuwenhoek ; 110(4): 531-542, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28040856

RESUMO

Bradyrhizobium diazoefficiens, a nitrogen-fixing endosymbiont of soybeans, is a model strain for studying rhizobial denitrification. This bacterium can also use nitrate as the sole nitrogen (N) source during aerobic growth by inducing an assimilatory nitrate reductase encoded by nasC located within the narK-bjgb-flp-nasC operon along with a nitrite reductase encoded by nirA at a different chromosomal locus. The global nitrogen two-component regulatory system NtrBC has been reported to coordinate the expression of key enzymes in nitrogen metabolism in several bacteria. In this study, we demonstrate that disruption of ntrC caused a growth defect in B. diazoefficiens cells in the presence of nitrate or nitrite as the sole N source and a decreased activity of the nitrate and nitrite reductase enzymes. Furthermore, the expression of narK-lacZ or nirA-lacZ transcriptional fusions was significantly reduced in the ntrC mutant after incubation under nitrate assimilation conditions. A B. diazoefficiens rpoN 1/2 mutant, lacking both copies of the gene encoding the alternative sigma factor σ54, was also defective in aerobic growth with nitrate as the N source as well as in nitrate and nitrite reductase expression. These results demonstrate that the NtrC regulator is required for expression of the B. diazoefficiens nasC and nirA genes and that the sigma factor RpoN is also involved in this regulation.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/metabolismo , Nitrato Redutase/metabolismo , Nitrito Redutases/metabolismo , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Desnitrificação/fisiologia , Nitrato Redutase/genética , Nitrito Redutases/genética , Glycine max/microbiologia
11.
Biochem J ; 473(3): 297-309, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26564204

RESUMO

Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.


Assuntos
Bradyrhizobium/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-26805937

RESUMO

The macronutrient composition of diets is a very important factor in the regulation of body weight and metabolism. Several lines of research in mammals have shown that macronutrients differentially regulate metabolic hormones, including ghrelin and nesfatin-1 that have opposing effects on energy balance. This study aimed to determine whether macronutrients modulate the expression of ghrelin and the nucleobindin-2 (NUCB2) encoded nesfatin-1 in goldfish (Carassius auratus). Fish were fed once daily on control, high-carbohydrate, high-protein, high-fat and very high-fat diets for 7 (short-term) or 28 (long-term) days. The expression of preproghrelin, ghrelin O-acyl transferase (goat), growth hormone secretagogue receptor 1 (ghs-r1) and nucb2/nesfatin-1 mRNAs was quantified in the hypothalamus, pituitary, gut and liver. Short-term feeding with fat-enriched diets significantly increased nucb2 mRNA levels in hypothalamus and liver, preproghrelin, goat and ghs-r1 expression in pituitary, and ghs-r1 expression in gut. Fish fed on a high-protein diet exhibited a significant reduction in preproghrelin and ghs-r1 mRNAs in the liver. After long-term feeding, fish fed on high-carbohydrate and very high-fat diets had significantly increased preproghrelin, goat and ghs-r1 expression in pituitary. Feeding on a high-carbohydrate diet also upregulated goat and ghs-r1 transcripts in gut, while feeding on a high-fat diet elicited the same effect only for ghs-r1 in liver. Nucb2 expression increased in pituitary, while it decreased in gut after long-term feeding of a high-protein diet. Collectively, these results show for the first time in fish that macronutrients differentially regulate the expression of ghrelinergic and NUCB2/nesfatin-1 systems in central and peripheral tissues of goldfish.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dieta , Grelina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Carpa Dourada , Nucleobindinas
13.
Gen Comp Endocrinol ; 221: 213-6, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25963042

RESUMO

The circadian system drives daily physiological and behavioral rhythms that allow animals to anticipate cyclic environmental changes. The discovery of the known as "clock genes", which are very well conserved through vertebrate phylogeny, highlighted the molecular mechanism of circadian oscillators functioning, based on transcription and translation cycles (∼ 24 h) of such clock genes. Studies in goldfish have shown that the circadian system in this species is formed by a net of oscillators distributed at central and peripheral locations, as the retina, brain, gut and liver, among others. In this work we review the existing information about the hepatic oscillator in goldfish due to its relevance in metabolism, and its key role as target of a variety of humoral signals. Different input signals modify the molecular clockwork in the liver of goldfish. Among them, there are environmental cues (photocycle and feeding regime) and different encephalic and peripheral endogenous signals (orexin, ghrelin and glucocorticoids). Per clock genes seem to be a common target for different signals. Thus, this genes family might be important for shifting the hepatic oscillator. The physiological relevance of the crosstalking between metabolic and feeding-related hormones and the hepatic clock sets the stage for the hypothesis that these hormones could act as "internal zeitgebers" communicating oscillators in the goldfish circadian system.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Carpa Dourada/metabolismo , Fígado/metabolismo , Animais , Carpa Dourada/genética
14.
BMC Microbiol ; 14: 142, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24888981

RESUMO

BACKGROUND: Denitrification is defined as the dissimilatory reduction of nitrate or nitrite to nitric oxide (NO), nitrous oxide (N2O), or dinitrogen gas (N2). N2O is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Legume crops might contribute to N2O production by providing nitrogen-rich residues for decomposition or by associating with rhizobia that are able to denitrify under free-living and symbiotic conditions. However, there are limited direct empirical data concerning N2O production by endosymbiotic bacteria associated with legume crops. Analysis of the Ensifer meliloti 1021 genome sequence revealed the presence of the napEFDABC, nirK, norECBQD and nosRZDFYLX denitrification genes. It was recently reported that this bacterium is able to grow using nitrate respiration when cells are incubated with an initial O2 concentration of 2%; however, these cells were unable to use nitrate respiration when initially incubated anoxically. The involvement of the nap, nirK, nor and nos genes in E. meliloti denitrification has not been reported. RESULTS: E. meliloti nap, nirK and norC mutant strains exhibited defects in their ability to grow using nitrate as a respiratory substrate. However, E meliloti nosZ was not essential for growth under these conditions. The E. meliloti napA, nirK, norC and nosZ genes encode corresponding nitrate, nitrite, nitric oxide and nitrous oxide reductases, respectively. The NorC component of the E. meliloti nitric oxide reductase has been identified as a c-type cytochrome that is 16 kDa in size. Herein, we also show that maximal expression of the E. meliloti napA, nirK, norC and nosZ genes occurred when cells were initially incubated anoxically with nitrate. CONCLUSION: The E. meliloti napA, nirK, norC and nosZ genes are involved in nitrate respiration and in the expression of denitrification enzymes in this bacterium. Our findings expand the short list of rhizobia for which denitrification gene function has been demonstrated. The inability of E. meliloti to grow when cells are initially subjected to anoxic conditions is not attributable to defects in the expression of the napA, nirK, norC and nosZ denitrification genes.


Assuntos
Desnitrificação , Redes e Vias Metabólicas/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica
15.
J Exp Biol ; 217(Pt 15): 2761-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24855680

RESUMO

Oleoylethanolamide (OEA) is a bioactive lipid mediator, produced in the intestine and other tissues, which is involved in energy balance regulation in mammals, modulating feeding and lipid metabolism. The purpose of the present study was to investigate the presence and possible role of OEA in feeding regulation in goldfish (Carassius auratus). We assessed whether goldfish peripheral tissues and brain contain OEA and their regulation by nutritional status. OEA was detected in all studied tissues (liver, intestinal bulb, proximal intestine, muscle, hypothalamus, telencephalon and brainstem). Food deprivation (48 h) reduced intestinal OEA levels and levels increased upon re-feeding, suggesting that this compound may be involved in the short-term regulation of food intake in goldfish, as a satiety factor. Next, the effects of acute intraperitoneal administration of OEA on feeding, swimming and plasma levels of glucose and triglycerides were analysed. Food intake, swimming activity and circulating triglyceride levels were reduced by OEA 2 h post-injection. Finally, the possible interplay among OEA and other feeding regulators (leptin, cholecystokinin, ghrelin, neuropeptide Y, orexin and monoamines) was investigated. OEA actions on energy homeostasis in goldfish could be mediated, at least in part, through interactions with ghrelin and the serotonergic system, as OEA treatment reduced ghrelin expression in the intestinal bulb, and increased serotonergic activity in the telencephalon. In summary, our results indicate for the first time in fish that OEA could be involved in the regulation of feeding, swimming and lipid metabolism, suggesting a high conservation of OEA actions in energy balance throughout vertebrate evolution.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Metabolismo dos Lipídeos/fisiologia , Neuropeptídeos/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Hormônios Peptídicos/metabolismo , Animais , Glicemia , Endocanabinoides/análise , Privação de Alimentos/fisiologia , Carpa Dourada , Injeções Intraperitoneais , Ácidos Oleicos/análise , Natação/fisiologia , Triglicerídeos/sangue
16.
Gen Comp Endocrinol ; 205: 287-95, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681192

RESUMO

Ghrelin is a potent orexigenic signal mainly synthesized in the stomach and foregut of vertebrates. Recent studies in rodents point out that ghrelin could also act as an input for the circadian system and/or as an output of peripheral food-entrainable oscillators, being involved in the food anticipatory activity (FAA). In this study we pursue the possible interaction of ghrelin with the circadian system in a teleost, the goldfish (Carassius auratus). First, we analyzed if ghrelin is able to modulate the core clock functioning by regulating clock gene expression in fish under a light/dark cycle 12L:12D and fed at 10 am. As expected the acute intraperitoneal (IP) injection of goldfish ghrelin (gGRL[1-19], 44 pmol/g bw) induced the expression of hypothalamic orexin. Moreover, ghrelin also induced (∼ 2-fold) some Per clock genes in hypothalamus and liver. This effect was partially counteracted in liver by the ghrelin antagonist ([D-Lys(3)]-GHRP-6, 100 pmol/g bw). Second, we investigated if ghrelin is involved in daily FAA rhythms. With this aim locomotor activity was studied in response to IP injections (5-10 days) of gGRL[1-19] and [D-Lys(3)]-GHRP-6 at the doses above indicated. Ghrelin and saline injected fish showed similar 24h activity patterns. However, ghrelin antagonist treatment abolished the FAA in schedule fed fish under 24h light, suggesting the involvement of the endogenous ghrelin system in this pre-feeding activity. Altogether these results suggest that ghrelin could be acting as an input for the entrainment of the food-entrainable oscillators in the circadian organization of goldfish.


Assuntos
Encéfalo/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Trato Gastrointestinal/metabolismo , Grelina/farmacologia , Carpa Dourada/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Proteínas CLOCK/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/antagonistas & inibidores , Carpa Dourada/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Fotoperíodo
17.
Gen Comp Endocrinol ; 204: 239-47, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24932715

RESUMO

Daily rhythms of feeding regulators are currently arousing research interest due to the relevance of the temporal harmony of endocrine regulators for growth and welfare in vertebrates. However, it is unknown the leptin circadian pattern in fish. The aim of this study is to investigate if leptin (gLep-aI and gLep-aII) expression is rhythmic in goldfish (Carassius auratus) liver and brain, and if such rhythms are driven by feeding time through a food entrainable oscillator. Fish maintained under 12-h light:12-h dark photoperiod and a scheduled feeding time showed 24-h locomotor activity and glycaemia rhythms. Moreover, hepatic gLep-aI and brain gLep-aI and gLep-aII expression were rhythmic with different daily profiles, showing a postprandial increase of leptin expression in the liver but not in the brain. Under constant light and different feeding regimes (scheduled fed at 10:00, 22:00 or randomly fed), feeding time synchronized daily rhythms in locomotor activity, glycaemia and clock gene expression (gPer1a, gPer3 and gCry3), but the rhythmic expression of hepatic gLep-aI and brain gLep-aII only remained in fed fish at 10:00. In summary, daily rhythms of leptin expression in goldfish are differently regulated at central and peripheral level, and they are not directly driven by clock genes. The role of food entrained oscillators on leptin expression rhythms in fish remains to be demonstrated.


Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Comportamento Alimentar , Regulação da Expressão Gênica , Carpa Dourada/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Animais , Carpa Dourada/crescimento & desenvolvimento , Leptina/genética , Luz , Atividade Motora , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37573143

RESUMO

The soybean endosymbiont Bradyrhizobium diazoefficiens harbours the complete denitrification pathway that is catalysed by a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a nitrous oxide reductase (Nos), encoded by the napEDABC, nirK, norCBQD, and nosRZDFYLX genes, respectively. Induction of denitrification genes requires low oxygen and nitric oxide, both signals integrated into a complex regulatory network comprised by two interconnected cascades, FixLJ-FixK2-NnrR and RegSR-NifA. Copper is a cofactor of NirK and Nos, but it has also a role in denitrification gene expression and protein synthesis. In fact, Cu limitation triggers a substantial down-regulation of nirK, norCBQD, and nosRZDFYLX gene expression under denitrifying conditions. Bradyrhizobium diazoefficiens genome possesses a gene predicted to encode a Cu-responsive repressor of the CsoR family, which is located adjacent to copA, a gene encoding a putative Cu+-ATPase transporter. To investigate the role of CsoR in the control of denitrification gene expression in response to Cu, a csoR deletion mutant was constructed in this work. Mutation of csoR did not affect the capacity of B. diazoefficiens to grow under denitrifying conditions. However, by using qRT-PCR analyses, we showed that nirK and norCBQD expression was much lower in the csoR mutant compared to wild-type levels under Cu-limiting denitrifying conditions. On the contrary, copA expression was significantly increased in the csoR mutant. The results obtained suggest that CsoR acts as a repressor of copA. Under Cu limitation, CsoR has also an indirect role in the expression of nirK and norCBQD genes.


Assuntos
Bradyrhizobium , Cobre , Cobre/metabolismo , Desnitrificação , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitratos/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
19.
BMC Microbiol ; 12: 207, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985230

RESUMO

BACKGROUND: The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions. RESULTS: Besides trehalose as major compatible solute, R. etli CE3 also accumulated glutamate and, if present in the medium, mannitol. Putative genes for trehalose synthesis (otsAB/treS/treZY), uptake (aglEFGK/thuEFGK) and degradation (thuAB/treC) were scattered among the chromosome and plasmids p42a, p42c, p42e, and p42f, and in some instances found redundant. Two copies of the otsA gene, encoding trehalose-6-P-synthase, were located in the chromosome (otsAch) and plasmid p42a (otsAa), and the latter seemed to be acquired by horizontal transfer. High temperature alone did not influence growth of R. etli, but a combination of high temperature and osmotic stress was more deleterious for growth than osmotic stress alone. Although high temperature induced some trehalose synthesis by R. etli, trehalose biosynthesis was mainly triggered by osmotic stress. However, an otsAch mutant, unable to synthesize trehalose in minimal medium, showed impaired growth at high temperature, suggesting that trehalose plays a role in thermoprotection of R. etli. Desiccation tolerance by R. etli wild type cells was dependent of high trehalose production by osmotic pre-conditioned cells. Cells of the mutant strain otsAch showed ca. 3-fold lower survival levels than the wild type strain after drying, and a null viability after 4 days storage. CONCLUSIONS: Our findings suggest a beneficial effect of osmotic stress in R. etli tolerance to desiccation, and an important role of trehalose on the response of R. etli to high temperature and desiccation stress.


Assuntos
Dessecação , Rhizobium etli/fisiologia , Estresse Fisiológico , Trealose/metabolismo , Cromossomos Bacterianos , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Redes e Vias Metabólicas/genética , Pressão Osmótica , Phaseolus/microbiologia , Plasmídeos , Rhizobium etli/genética , Rhizobium etli/metabolismo , Rhizobium etli/efeitos da radiação , Microbiologia do Solo
20.
Front Physiol ; 13: 903799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733989

RESUMO

The circadian system is formed by a network of oscillators located in central and peripheral tissues that are tightly linked to generate rhythms in vertebrates to adapt the organism to the cyclic environmental changes. The nuclear receptors PPARs, REV-ERBs and RORs are transcription factors controlled by the circadian system that regulate, among others, a large number of genes that control metabolic processes for which they have been proposed as key genes that link metabolism and temporal homeostasis. To date it is unclear whether these nuclear receptors show circadian expression and which zeitgebers are important for their synchronization in fish. Therefore, the objective of this study was to investigate whether the two main zeitgebers (light-dark cycle and feeding time) could affect the synchronization of central (hypothalamus) and peripheral (liver) core clocks and nuclear receptors in goldfish. To this aim, three experimental groups were established: fish under a 12 h light-12 h darkness and fed at Zeitgeber Time 2; fish with the same photoperiod but randomly fed; and fish under constant darkness and fed at Circadian Time 2. After one month, clock genes and nuclear receptors expression in hypothalamus and liver and circulating glucose were studied. Clock genes displayed daily rhythms in both tissues of goldfish if the light-dark cycle was present, with shifted-acrophases of negative and positive elements, as expected for proper functioning clocks. In darkness-maintained fish hypothalamic clock genes were fully arrhythmic while the hepatic ones were still rhythmic. Among studied nuclear receptors, in the hypothalamus only nr1d1 was rhythmic and only when the light-dark cycle was present. In the liver all nuclear receptors were rhythmic when both zeitgebers were present, but only nr1d1 when one of them was removed. Plasma glucose levels showed significant rhythms in fish maintained under random fed regimen or constant darkness, with the highest levels at 1-h postprandially in all groups. Altogether these results support that hypothalamus is mainly a light-entrained-oscillator, while the liver is a food-entrained-oscillator. Moreover, nuclear receptors are revealed as clear outputs of the circadian system acting as key elements in the timekeeping of temporal homeostasis, particularly in the liver.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa