Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Pharm ; 21(1): 234-244, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060844

RESUMO

Assessing drug disposition in the skin after the application of a topical formulation is difficult. It is hypothesized that reverse iontophoresis (RI), which can extract charged/polar molecules for monitoring purposes, may provide a noninvasive approach for the assessment of local drug bioavailability. The passive and RI extraction of salicylic acid (SA) and nicotine (NIC) from porcine skin in vitro was assessed after a simple solution of the former and a transdermal patch of the latter had been applied for 24 and 8 h, respectively. Immediately after this "passive skin loading", the amount of drug in the stratum corneum (SC) and "viable" tissue (VT) was measured either (a) after tape-stripping and subsequent solvent extraction of both skin layers or (b) following RI extraction over 4 h. Parallel experiments were then performed in vivo in healthy volunteers; in this case, the VT was not sampled and the skin loading period for NIC was only 4 h. RI extraction of both drugs was significantly higher (in vitro and in vivo) than that achieved passively, and the cumulative RI extraction profiles as a function of time were mathematically analyzed using a straightforward compartmental model. Best-fit estimates of drug amounts in the SC and VT (ASC,0 and AVT,0, respectively) at the end of "loading" and two first-order rate constants describing transfer between the model compartments were then determined. The in vitro predictions of ASC,0 and AVT,0 were in excellent agreement with the experimental results, as was the value of the former in vivo. The rate constants derived from the in vitro and in vivo results were also similar. In summary, the results provide proof-of-concept that the RI method has the potential to noninvasively assess relevant metrics of drug bioavailability in the skin.


Assuntos
Iontoforese , Pele , Suínos , Animais , Humanos , Iontoforese/métodos , Disponibilidade Biológica , Pele/metabolismo , Absorção Cutânea , Epiderme
2.
Mol Pharm ; 20(5): 2527-2535, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053523

RESUMO

Evaluation of the bioavailability of drugs intended to act within the skin following the application of complex topical products requires the application of multiple experimental tools, which must be quantitative, validated, and, ideally and ultimately, sufficiently minimally invasive to permit use in vivo. The objective here is to show that both infrared (IR) and Raman spectroscopies can assess the uptake of a chemical into the stratum corneum (SC) that correlates directly with its quantification by the adhesive tape-stripping method. Experiments were performed ex vivo using excised porcine skin and measured chemical disposition in the SC as functions of application time and formulation composition. The quantity of chemicals in the SC removed on each tape-strip was determined from the individually measured IR and Raman signal intensities of a specific molecular vibration at a frequency where the skin is spectroscopically silent and by a subsequent conventional extraction and chromatographic analysis. Correlations between the spectroscopic results and the chemical quantification on the tape-strips were good, and the effects of longer application times and the use of different vehicles were clearly delineated by the different measurement techniques. Based on this initial investigation, it is now possible to explore the extent to which the spectroscopic approach (and Raman in particular) may be used to interrogate chemical disposition deeper in the skin and beyond the SC.


Assuntos
Pele , Vibração , Animais , Suínos , Pele/metabolismo , Epiderme , Absorção Cutânea , Análise Espectral Raman
3.
Mol Pharm ; 20(11): 5910-5920, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801410

RESUMO

Confocal Raman spectroscopy is being assessed as a tool with which to quantify the rate and extent of drug uptake to and its clearance from target sites of action within the viable epidermis below the skin's stratum corneum (SC) barrier. The objective of this research was to confirm that Raman can interrogate drug disposition within the living layers of the skin (where many topical drugs elicit their pharmacological effects) and to identify procedures by which Raman signal attenuation with increasing skin depth may be corrected and normalized so that metrics descriptive of topical bioavailability may be identified. It was first shown in experiments on skin cross-sections parallel to the skin surface that the amide I signal, originating primarily from keratin, was quite constant with depth into the skin and could be used to correct for signal attenuation when confocal Raman data were acquired in a "top-down" fashion. Then, using 4-cyanophenol (CP) as a model skin penetrant with a strong Raman-active C≡N functionality, a series of uptake and clearance experiments, performed as a function of time, demonstrated clearly that normalized spectroscopic data were able to detect the penetrant to at least 40-80 µm into the skin and to distinguish the disposition of CP from different vehicles. Metrics related to local bioavailability (and potentially bioequivalence) included areas under the normalized C≡N signal versus depth profiles and elimination rate constants deduced post-removal of the formulations. Finally, Raman measurements were made with an approved dermatological drug, crisaborole, for which delivery from a fully saturated formulation into the skin layers just below the SC was detectable.


Assuntos
Absorção Cutânea , Análise Espectral Raman , Análise Espectral Raman/métodos , Pele/metabolismo , Epiderme/metabolismo , Disponibilidade Biológica , Microscopia Confocal/métodos
4.
Phytochem Anal ; 34(4): 408-413, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971356

RESUMO

For the commercial-scale isolation of phytochemicals, a suitable plant biomass source (including species, origin, growing season, etc.) must be identified, and frequent analytical verification is required to ensure that the phytochemicals are present at predefined minimum threshold concentrations. While the latter are typically assessed in the laboratory, a more efficient and less resource-intensive approach would involve non-destructive and environmentally friendly measurements in situ. Reverse iontophoretic (RI) sampling offers a potential solution to this challenge. OBJECTIVE: We aimed to demonstrate the non-destructive, RI sampling of phytochemicals of interest from biomass from four different sources. MATERIALS AND METHODS: RI experiments were performed in side-by-side diffusion cells using a current density of 0.5 mA/cm2 , for a predetermined time in a defined pH environment, using (1) fresh leaves from Mangifera indica and Centella asiatica and (2) isolated peel from Punica granatum and Citrus sinensis. RESULTS: Mangiferin, madecassoside, punicalagin, ellagic acid, and hesperidin were extracted from the different biomasses by RI. The amounts extracted ranged from 0.03 mg/100 mg of biomass for the cathodal extraction of madecassoside to 0.63 mg/100 mg of biomass for the anodal extraction of punicalagin. A linear relationship (r2  = 0.73) between the RI-extracted quantities of punicalagin and those determined using conventional methods was demonstrated. CONCLUSION: The non-destructive, in situ measurement of phytochemical levels by RI represents a feasible approach for timing the harvesting process.


Assuntos
Centella , Citrus sinensis , Mangifera , Punica granatum , Extratos Vegetais , Compostos Fitoquímicos
5.
Int J Sport Nutr Exerc Metab ; 33(2): 93-101, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087103

RESUMO

Phosphate is integral to numerous metabolic processes, several of which strongly predict exercise performance (i.e., cardiac function, oxygen transport, and oxidative metabolism). Evidence regarding phosphate loading is limited and equivocal, at least partly because studies have examined sodium phosphate supplements of varied molar mass (e.g., mono/di/tribasic, dodecahydrate), thus delivering highly variable absolute quantities of phosphate. Within a randomized cross-over design and in a single-blind manner, 16 well-trained cyclists (age 38 ± 16 years, mass 74.3 ± 10.8 kg, training 340 ± 171 min/week; mean ± SD) ingested either 3.5 g/day of dibasic sodium phosphate (Na2HPO4: 24.7 mmol/day phosphate; 49.4 mmol/day sodium) or a sodium chloride placebo (NaCl: 49.4 mmol/day sodium and chloride) for 4 days prior to each of two 30-km time trials, separated by a washout interval of 14 days. There was no evidence of any ergogenic benefit associated with phosphate loading. Time to complete the 30-km time trial did not differ following ingestion of sodium phosphate and sodium chloride (3,059 ± 531 s vs. 2,995 ± 467 s). Accordingly, neither absolute mean power output (221 ± 48 W vs. 226 ± 48 W) nor relative mean power output (3.02 ± 0.78 W/kg vs. 3.08 ± 0.71 W/kg) differed meaningfully between the respective intervention and placebo conditions. Measures of cardiovascular strain and ratings of perceived exertion were very closely matched between treatments (i.e., average heart rate 161 ± 11 beats per minute vs. 159 ± 12 beats per minute; Δ2 beats per minute; and ratings of perceived exertion 18 [14-20] units vs. 17 [14-20] units). In conclusion, supplementing with relatively high absolute doses of phosphate (i.e., >10 mmol daily for 4 days) exerted no ergogenic effects on trained cyclists completing 30-km time trials.


Assuntos
Desempenho Atlético , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Consumo de Oxigênio , Fosfatos/farmacologia , Resistência Física , Método Simples-Cego , Sódio , Cloreto de Sódio
6.
Mol Pharm ; 18(7): 2714-2723, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34124907

RESUMO

Prediction of skin absorption and local bioavailability from topical formulations remains a difficult task. An important challenge in forecasting topical bioavailability is the limited information available about local and systemic drug concentrations post application of topical drug products. Commercially available transdermal patches, such as Scopoderm (Novartis Consumer Health UK), offer an opportunity to test these experimental approaches as systemic pharmacokinetic data are available with which to validate a predictive model. The long-term research aim, therefore, is to develop a physiologically based pharmacokinetic model (PBPK) to predict the dermal absorption and disposition of actives included in complex dermatological products. This work explored whether in vitro release and skin permeation tests (IVRT and IVPT, respectively), and in vitro and in vivo stratum corneum (SC) and viable tissue (VT) sampling data, can provide a satisfactory description of drug "input rate" into the skin and subsequently into the systemic circulation. In vitro release and skin permeation results for scopolamine were consistent with the previously reported performance of the commercial patch investigated. New skin sampling data on the dermatopharmacokinetics (DPK) of scopolamine also accurately reflected the rapid delivery of a "priming" dose from the patch adhesive, superimposed on a slower, rate-controlled input from the drug reservoir. The scopolamine concentration versus time profiles in SC and VT skin compartments, in vitro and in vivo, taken together with IVRT release and IVPT penetration kinetics, reflect the input rate and drug delivery specifications of the Scopoderm transdermal patch and reveal the importance of skin binding with respect to local drug disposition. Further data analysis and skin PK modeling are indicated to further refine and develop the approach outlined.


Assuntos
Sistemas de Liberação de Medicamentos , Modelos Teóricos , Escopolamina/farmacocinética , Absorção Cutânea , Pele/metabolismo , Adesivo Transdérmico/estatística & dados numéricos , Administração Cutânea , Adulto , Disponibilidade Biológica , Feminino , Humanos , Masculino , Permeabilidade , Escopolamina/administração & dosagem
7.
Mycopathologia ; 185(2): 233-243, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32108288

RESUMO

Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.


Assuntos
Pele/microbiologia , Tinha/microbiologia , Técnicas de Cultura de Tecidos/métodos , Trichophyton/crescimento & desenvolvimento , Animais , Antifúngicos/farmacologia , Dermatomicoses/tratamento farmacológico , Dermatomicoses/microbiologia , Modelos Animais de Doenças , Epiderme/microbiologia , Epiderme/patologia , Humanos , Microscopia Eletrônica de Varredura , Pele/patologia , Esporos Fúngicos/crescimento & desenvolvimento , Suínos , Tinha/tratamento farmacológico
9.
Mol Pharm ; 16(6): 2808-2816, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31070927

RESUMO

The opioids buprenorphine hydrochloride (BUP) and naltrexone hydrochloride (NTX) show promise as a combination treatment for addiction, but no means of delivering the two compounds in one medicine currently exist. In this paper, we report sufficient input rates of both these drugs from one iontophoretic transdermal drug delivery system. Experiments were performed using dermatomed pig skin mounted in glass side-bi-side cells. BUP and NTX were iontophoretically delivered together from the anode using direct constant current from Ag/AgCl electrodes. The transdermal drug fluxes and the masses of drugs in both the stratum corneum and the underlying epidermis/dermis were measured. The apparent electroosmotic flow was quantified using a neutral marker (acetaminophen). The effects of donor composition (drug concentration/molar fraction and pH), current density and profile, and the choice of receptor solution were assessed. Iontophoresis dramatically increased the flux of both drugs compared to passive control values. Target fluxes (calculated from literature clearance values and required therapeutic plasma concentrations) were greatly exceeded for NTX and were met for BUP. The latter accumulated in the skin and suppressed electroosmotic flow, inhibiting both its own flux and that of NTX. NTX, in turn, negatively influenced the flux of BUP via co-ion competition. Lowering current density by increasing the delivery area resulted in increased electroosmotic flow but did not significantly affect current-normalized drug fluxes. Delivering the drugs from both electrodes and reversing the polarity for every 2 h did not increase the flux of either compound. In summary, during iontophoresis, BUP and NTX inhibited each other's flux by two distinct mechanisms. While the more complex behavior of BUP complicates the optimization of this drug combination, iontophoresis nevertheless appears to be a feasible approach for the controlled codelivery of NTX and BUP through the skin.


Assuntos
Buprenorfina/química , Sistemas de Liberação de Medicamentos/métodos , Naltrexona/química , Acetaminofen/química , Concentração de Íons de Hidrogênio , Iontoforese
10.
Proc Natl Acad Sci U S A ; 112(25): 7725-30, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056283

RESUMO

The effective treatment of diseases of the nail remains an important unmet medical need, primarily because of poor drug delivery. To address this challenge, the diffusion, in real time, of topically applied chemicals into the human nail has been visualized and characterized using stimulated Raman scattering (SRS) microscopy. Deuterated water (D2O), propylene glycol (PG-d8), and dimethyl sulphoxide (DMSO-d6) were separately applied to the dorsal surface of human nail samples. SRS microscopy was used to image D2O, PG-d8/DMSO-d6, and the nail through the O-D, -CD2, and -CH2 bond stretching Raman signals, respectively. Signal intensities obtained were measured as functions of time and of depth into the nail. It was observed that the diffusion of D2O was more than an order of magnitude faster than that of PG-d8 and DMSO-d6. Normalization of the Raman signals, to correct in part for scattering and absorption, permitted semiquantitative analysis of the permeation profiles and strongly suggested that solvent diffusion diverged from classical behavior and that derived diffusivities may be concentration dependent. It appeared that the uptake of solvent progressively undermined the integrity of the nail. This previously unreported application of SRS has permitted, therefore, direct visualization and semiquantitation of solvent penetration into the human nail. The kinetics of uptake of the three chemicals studied demonstrated that each altered its own diffusion in the nail in an apparently concentration-dependent fashion. The scale of the unexpected behavior observed may prove beneficial in the design and optimization of drug formulations to treat recalcitrant nail disease.


Assuntos
Microscopia/métodos , Unhas/química , Análise Espectral Raman/métodos , Óxido de Deutério/química , Difusão , Humanos , Microscopia Eletrônica de Varredura
12.
Pharm Res ; 34(4): 730-737, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097506

RESUMO

OBJECTIVE: To examine whether in vitro and ex vivo measurements of topical drug product performance correlate with in vivo outcomes, such that more efficient experimental approaches can be reliably and reproducibly used to establish (in)equivalence between formulations for skin application. MATERIALS AND METHODS: In vitro drug release through artificial membranes, and drug penetration into porcine skin ex vivo, were compared with published human in vivo studies. Two betamethasone valerate (BMV) formulations, and three marketed econazole nitrate (EN) creams were assessed. RESULTS: For BMV, the stratum corneum (SC) uptake of drug in 6 h closely matched data observed in vivo in humans, and distinguished between inequivalent formulations. SC uptake of EN from the 3 creams mirrored the in vivo equivalence in man (both clinically and via similar tape-stripping experiments). However, EN clearance from SC ex vivo did not parallel that in vivo, presumably due to the absence of a functioning microcirculation. In vitro release of BMV from the different formulations did not overlap with either ex vivo or in vivo tape-stripping data whereas, for EN, a good correlation was observed. No measurable permeation of either BMV or EN was detected in a 6-h in vitro skin penetration experiment. CONCLUSIONS: In vitro and ex vivo methods for topical bioequivalence determination can show correlation with in vivo outcomes. However, these surrogates have understandable limitations. A "one-size-fits-all" approach for topical bioequivalence evaluation may not always be successful, therefore, and the judicious use of complementary methods may prove a more effective and reliable strategy.


Assuntos
Corticosteroides/farmacocinética , Antifúngicos/farmacocinética , Valerato de Betametasona/farmacocinética , Econazol/farmacocinética , Absorção Cutânea/fisiologia , Administração Tópica , Animais , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Humanos , Membranas Artificiais , Pele/efeitos dos fármacos , Pele/metabolismo , Creme para a Pele , Suínos , Equivalência Terapêutica
13.
Pharm Res ; 32(2): 590-603, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25190007

RESUMO

PURPOSE: To explore the potential of non-invasive reverse iontophoresis transdermal extraction of iohexol as a marker of glomerular filtration rate. METHODS: A series of in vitro experiments were undertaken to establish the feasibility of iohexol reverse iontophoresis and to determine the optimal conditions for the approach. Subsequently, a pilot study in paediatric patients was performed to provide proof-of-concept. RESULTS: The iontophoretic extraction fluxes of iohexol in vitro were proportional to the marker subdermal concentration and the reverse iontophoretic technique was able to track changes dynamically in simulated pharmacokinetic profiles. Reverse iontophoresis sampling was well tolerated by the four paediatric participants. The deduced values of the iohexol terminal elimination rate constant from transdermal reverse iontophoresis sampling agreed with those estimated by conventional blood sampling. CONCLUSIONS: Reverse iontophoretic transdermal extraction fluxes mirrored the subdermal concentration profiles of iohexol, a relatively large neutral marker of glomerular filtration both in vitro and in vivo. The efficiency of extraction in vivo was well predicted by the in vitro model used.


Assuntos
Taxa de Filtração Glomerular/efeitos dos fármacos , Taxa de Filtração Glomerular/fisiologia , Iohexol/metabolismo , Iontoforese/métodos , Absorção Cutânea/efeitos dos fármacos , Absorção Cutânea/fisiologia , Administração Cutânea , Adolescente , Animais , Criança , Feminino , Humanos , Iohexol/administração & dosagem , Masculino , Técnicas de Cultura de Órgãos , Projetos Piloto , Suínos
14.
Addict Biol ; 19(4): 575-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23240906

RESUMO

Concurrent use of cocaine and heroin is a major public health issue with no effective relapse prevention treatment currently available. To this purpose, a combination of buprenorphine and naltrexone, a mixed very-low efficacy mu-opioid receptor agonist/kappa-opioid receptor antagonist/nociceptin receptor agonist, was investigated. The tail-withdrawal and the conditioned place preference (CPP) assays in adult Sprague Dawley rats were used to show that naltrexone dose-dependently blocked the mu-opioid receptor agonism of buprenorphine. Furthermore, in the CPP assay, a combination of 0.3 mg/kg buprenorphine and 3.0 mg/kg naltrexone was aversive. A combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone was neither rewarding nor aversive, but still possessed mu-opioid receptor antagonist properties. In the CPP extinction and reinstatement method, a combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone completely blocked drug-primed reinstatement in cocaine-conditioned rats (conditioned with 3 mg/kg cocaine, drug prime was 3 mg/kg cocaine) and attenuated drug-primed reinstatement in morphine-conditioned rats (conditioned with 5 mg/kg morphine, drug prime was 1.25 mg/kg morphine). These data add to the growing evidence that a buprenorphine/naltrexone combination may be protective against relapse in a polydrug abuse situation.


Assuntos
Buprenorfina/farmacologia , Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Morfina/farmacologia , Naltrexona/farmacologia , Recompensa , Animais , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada/métodos , Masculino , Antagonistas de Entorpecentes/farmacologia , Entorpecentes/farmacologia , Ratos , Ratos Sprague-Dawley
15.
Pharmaceutics ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38258083

RESUMO

Topical treatments for onychomycosis are of interest to those seeking to avoid systemic drug interactions and to improve systemic safety. This work aimed to develop aqueous-based, simple, and cost-effective vehicles that provide high solubility for ciclopirox and enable the delivery of an active through channels created by nail microporation. Following solubility tests, aqueous gels and thermogels based on hydroxypropylmethylcellulose and poloxamer 407, respectively, were loaded with 8% and 16% ciclopirox. Their performance was then compared to the marketed lacquer Micolamina® in in vitro release tests with artificial membranes and in in vitro permeation tests with human nail clippings with and without poration. Finally, a microbiological assay compared the best gel formulations and the reference product. Little correlation was observed between the in vitro release and the permeation data, and the drug release was highly membrane-dependent. Ciclopirox nail retention in single-dose, porated nails tests was larger than in daily-dosing, non-porated nail conditions. The series of new gel and thermogel vehicles delivered ciclopirox more effectively than Micolamina® in single-dose, porated nail experiments. The inhibition of Trichophyton rubrum activity was significantly increased with microporated nails when the gel formulations were applied but not with Micolamina®. Overall, the results suggest that the new vehicles could be successfully combined with nail microporation to improve the drug delivery and efficacy of topical antifungal medication while reducing the dosing frequency, facilitating patients' adherence.

16.
J Control Release ; 368: 797-807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350493

RESUMO

Tracking drug disposition in the skin in a non-destructive and at least semi-quantitative fashion is a relevant objective for the assessment of local (cutaneous) bioavailability. Confocal Raman spectroscopy has been shown potentially useful in this regard and, importantly, recent advances have enabled the presence of applied chemicals in the viable epidermis below the stratum corneum (SC) to be determined without ambiguity and having addressed the challenges of (a) background signals from endogenous species and noise and (b) signal attenuation due to absorption and scattering. This study aimed to confirm these observations using a different vibrational spectroscopy approach - specifically, stimulated Raman scattering (SRS) microscopy - and the more conventional in vitro skin penetration test (IVPT). SRS is a nonlinear optical imaging technique which enables more precise location of the skin surface and enhanced skin depth resolution relative to confocal Raman microscopy. The method can also probe larger areas of the sample under investigation and identify the localization of the permeating chemical in specific structural components of the skin. Here, SRS was shown capable of tracking the uptake and distribution of 4-cyanophenol (CP), the same model compound used in the recent confocal Raman investigation, at depths beyond the SC following skin treatment with different vehicles and for different times. The SRS results correlated well with those from the confocal Raman experiments, and both were consistent with independent IVPT measurements. Acquired images clearly delineated CP preference for the intercellular lipid layers of the SC relative to the corneocytes. The stage is now set to apply these and other correlative techniques to examine commercial drug products.


Assuntos
Epiderme , Pele , Pele/metabolismo , Epiderme/metabolismo , Absorção Cutânea , Microscopia Confocal/métodos , Microscopia Óptica não Linear , Análise Espectral Raman/métodos
17.
Pharm Res ; 30(6): 1652-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462934

RESUMO

PURPOSE: To investigate whether permeation enhancement techniques affect the nail plate. METHODS: Infrared and impedance spectroscopies examined the effects of hydration, iontophoresis and N-acetyl-L-cysteine on the human nail. RESULTS: While significant shifts to higher wavenumbers were observed for the symmetric and asymmetric -CH2 stretching vibrations these changes were essentially the same for the three treatments suggesting they were principally due to hydration alone. Spectral changes associated with amide bonds from nail protein were particularly evident post-treatment with N-acetyl-L-cysteine. The alternating current conductivity and permittivity of the nail, particularly at low frequencies, increased with hydration. Iontophoresis increased the low frequency ac conductivity of the nail but had less effect on the nail capacitance/permittivity. Further, the effects seemed to return gradually to baseline after termination of current passage. Treatment with N-acetyl-L-cysteine produced a greater perturbation, leading to increased low-frequency conductivity and a shift of the frequency-dependent conductivity region to a higher frequency. CONCLUSIONS: Overall, the effects of iontophoresis on infrared and impedance spectroscopic profiles of the nail were attributable simply to increased hydration and similar to those observed after skin iontophoresis. In contrast, both spectroscopy techniques indicated that N-acetyl-L-cysteine disrupted nail structure in line with the enhancer's known effect on keratin.


Assuntos
Espectroscopia Dielétrica/métodos , Iontoforese/métodos , Unhas/metabolismo , Espectrofotometria Infravermelho/métodos , Acetilcisteína/administração & dosagem , Humanos , Queratinas/metabolismo , Permeabilidade/efeitos dos fármacos , Pele/metabolismo
18.
RSC Adv ; 13(17): 11261-11268, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37057274

RESUMO

Plant metabolic profiling can provide a wealth of information regarding the biochemical status of the organism, but sample acquisition typically requires an invasive and/or destructive extraction process. Reverse iontophoresis (RI) imposes a small electric field across a biological membrane to substantially enhance the transport of charged and polar compounds and has been employed, in particular, to extract biomarkers of interest across human skin. The objective of this work was to examine the capability of RI to sample phytochemicals in a minimally invasive fashion in fructo (i.e., from the intact fruit). RI was principally used to extract a model, bioactive compound - specifically, ellagic acid - from the fruit peel of Punica granatum L. The RI sampling protocol was refined using isolated peel, and a number of experimental factors were examined and optimised, including preparation of the peel samples, the current intensity applied and the pH of the medium into which samples were collected. The most favourable conditions (3 mA current for a period of 1 hour, into a buffer at pH 7.4) were then applied to the successful RI extraction of ellagic acid from intact pomegranates. Multiple additional phytochemicals were also extracted and identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). A successful proof-of-concept has been achieved, demonstrating the capability to non-destructively extract phytochemicals of interest from intact fruit.

19.
Pharm Res ; 29(12): 3464-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22869107

RESUMO

PURPOSE: To estimate the in vitro ungual penetration depth of sodium fluorescein and nile blue chloride by laser scanning confocal microscopy. METHODS: The depth, uniformity and pathways of penetration of both markers into human nail during passive and iontophoretic experiments were investigated. The penetration of sodium fluorescein into the dorsal, ventral and intermediate layers of the nail was also studied. Transversal images were used to estimate directly the relative penetration of the markers with respect to the complete thickness of the nail. "Exposed layer" images allowed estimating the depth of penetration by taking xy-plans, starting by the exposed layer, and following the z axis into the nail. RESULTS: The fluorescent markers penetrated 7-12% of the nail thickness. Iontophoresis increased penetration of both markers compared to passive diffusion. However, ungual penetration was not modified by the intensity of current applied. Penetration into the dorsal, ventral, and intermediate nail layers was similar. The method developed allowed inter- and intra- nail variability to be accounted for. CONCLUSIONS: Iontophoresis enhanced moderately the penetration of the two markers into the nail plate as compared to passive diffusion. The confocal images suggested the transcellular pathway to be predominant during both passive and iontophoretic experiments.


Assuntos
Fluoresceína/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Iontoforese , Unhas/metabolismo , Oxazinas/administração & dosagem , Difusão , Fluoresceína/análise , Fluoresceína/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/metabolismo , Humanos , Microscopia Confocal , Unhas/ultraestrutura , Oxazinas/análise , Oxazinas/metabolismo , Permeabilidade
20.
Int J Pharm ; 614: 121469, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35031414

RESUMO

An important question in the development of a dermatological drug product is whether a target concentration has been achieved in, for example, the viable epidermis following topical administration. When attempting to address this challenge, it is essential to consider the role of excipients in the formulation that may influence drug partitioning and diffusion in the different layers of the skin. The objective, therefore, was to correlate, in human subjects, the skin pharmacokinetics of diclofenac (specifically, its uptake into and clearance from the stratum corneum (SC)) from an approved drug product (Voltaren® medicated plaster) with the in vivo co-uptake of two key excipients, namely propylene glycol and butylene glycol. SC sampling was used to assess diclofenac input into the skin during patch application, and its subsequent clearance post-removal of the delivery system. In parallel the uptake of the two glycol excipients was also measured. Drug and excipient amounts in the SC increased with time of application up to 6 h and, for diclofenac, no further increase was observed when the administration was prolonged to 12 h. When the plaster was removed after 6 h of wear, diclofenac cleared relatively slowly from the SC suggesting that drug binding with a slow off-rate had occurred. The results indicate that the optimisation of drug delivery from a topical formulation must take into account the disposition of key excipients and their impact on dermato-pharmacokinetics in general.


Assuntos
Diclofenaco , Excipientes , Absorção Cutânea , Administração Cutânea , Diclofenaco/farmacocinética , Excipientes/farmacocinética , Humanos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa