Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2311374121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648478

RESUMO

The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.


Assuntos
Cromatina , Fatores de Transcrição , Cromatina/metabolismo , Cromatina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Fator de Transcrição CDX2/metabolismo , Fator de Transcrição CDX2/genética , Regulação da Expressão Gênica , Núcleo Celular/metabolismo , Sítios de Ligação , Montagem e Desmontagem da Cromatina
2.
Genes Dev ; 30(22): 2538-2550, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920086

RESUMO

Mitotic bookmarking transcription factors remain bound to chromosomes during mitosis and were proposed to regulate phenotypic maintenance of stem and progenitor cells at the mitosis-to-G1 (M-G1) transition. However, mitotic bookmarking remains largely unexplored in most stem cell types, and its functional relevance for cell fate decisions remains unclear. Here we screened for mitotic chromosome binding within the pluripotency network of embryonic stem (ES) cells and show that SOX2 and OCT4 remain bound to mitotic chromatin through their respective DNA-binding domains. Dynamic characterization using photobleaching-based methods and single-molecule imaging revealed quantitatively similar specific DNA interactions, but different nonspecific DNA interactions, of SOX2 and OCT4 with mitotic chromatin. Using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) to assess the genome-wide distribution of SOX2 on mitotic chromatin, we demonstrate the bookmarking activity of SOX2 on a small set of genes. Finally, we investigated the function of SOX2 mitotic bookmarking in cell fate decisions and show that its absence at the M-G1 transition impairs pluripotency maintenance and abrogates its ability to induce neuroectodermal differentiation but does not affect reprogramming efficiency toward induced pluripotent stem cells. Our study demonstrates the mitotic bookmarking property of SOX2 and reveals its functional importance in pluripotency maintenance and ES cell differentiation.


Assuntos
Diferenciação Celular/genética , Mitose/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/metabolismo , Células-Tronco Embrionárias , Fase G1 , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células NIH 3T3 , Placa Neural/citologia , Placa Neural/fisiologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Ligação Proteica
3.
Mol Syst Biol ; 15(9): e9002, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31556488

RESUMO

SOX2 and OCT4 are pioneer transcription factors playing a key role in embryonic stem (ES) cell self-renewal and differentiation. How temporal fluctuations in their expression levels bias lineage commitment is unknown. Here, we generated knock-in reporter fusion ES cell lines allowing to monitor endogenous SOX2 and OCT4 protein fluctuations in living cells and to determine their impact on mesendodermal and neuroectodermal commitment. We found that small differences in SOX2 and OCT4 levels impact cell fate commitment in G1 but not in S phase. Elevated SOX2 levels modestly increased neuroectodermal commitment and decreased mesendodermal commitment upon directed differentiation. In contrast, elevated OCT4 levels strongly biased ES cells towards both neuroectodermal and mesendodermal fates in undirected differentiation. Using ATAC-seq on ES cells gated for different endogenous SOX2 and OCT4 levels, we found that high OCT4 levels increased chromatin accessibility at differentiation-associated enhancers. This suggests that small endogenous fluctuations of pioneer transcription factors can bias cell fate decisions by concentration-dependent priming of differentiation-associated enhancers.


Assuntos
Diferenciação Celular/genética , Fator 3 de Transcrição de Octâmero , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição SOXB1 , Animais , Linhagem Celular , Endoderma/citologia , Endoderma/metabolismo , Elementos Facilitadores Genéticos/genética , Técnicas de Introdução de Genes/métodos , Camundongos , Placa Neural/citologia , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
4.
Nature ; 512(7514): 276-81, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25119048

RESUMO

Neurotransmitter-gated ion channels of the Cys-loop receptor family mediate fast neurotransmission throughout the nervous system. The molecular processes of neurotransmitter binding, subsequent opening of the ion channel and ion permeation remain poorly understood. Here we present the X-ray structure of a mammalian Cys-loop receptor, the mouse serotonin 5-HT3 receptor, at 3.5 Å resolution. The structure of the proteolysed receptor, made up of two fragments and comprising part of the intracellular domain, was determined in complex with stabilizing nanobodies. The extracellular domain reveals the detailed anatomy of the neurotransmitter binding site capped by a nanobody. The membrane domain delimits an aqueous pore with a 4.6 Å constriction. In the intracellular domain, a bundle of five intracellular helices creates a closed vestibule where lateral portals are obstructed by loops. This 5-HT3 receptor structure, revealing part of the intracellular domain, expands the structural basis for understanding the operating mechanism of mammalian Cys-loop receptors.


Assuntos
Receptores 5-HT3 de Serotonina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurotransmissores/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo
5.
J Biol Chem ; 288(8): 5756-69, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23275379

RESUMO

Pentameric ligand-gated ion channels (LGICs) play an important role in fast synaptic signal transduction. Binding of agonists to the ß-sheet-structured extracellular domain opens an ion channel in the transmembrane α-helical region of the LGIC. How the structurally distinct and distant domains are functionally coupled for such central transmembrane signaling processes remains an open question. To obtain detailed information about the stability of and the coupling between these different functional domains, we analyzed the thermal unfolding of a homopentameric LGIC, the 5-hydroxytryptamine receptor (ligand binding, secondary structure, accessibility of Trp and Cys residues, and aggregation), in plasma membranes as well as during detergent extraction, purification, and reconstitution into artificial lipid bilayers. We found a large loss in thermostability correlating with the loss of the lipid bilayer during membrane solubilization and purification. Thermal unfolding of the 5-hydroxytryptamine receptor occurred in consecutive steps at distinct protein locations. A loss of ligand binding was detected first, followed by formation of different transient low oligomeric states of receptor pentamers, followed by partial unfolding of helical parts of the protein, which finally lead to the formation receptor aggregates. Structural destabilization of the receptor in detergents could be partially reversed by reconstituting the receptor into lipid bilayers. Our results are important because they quantify the stability of LGICs during detergent extraction and purification and can be used to create stabilized receptor proteins for structural and functional studies.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , DNA Complementar/metabolismo , Detergentes/química , Detergentes/farmacologia , Temperatura Alta , Ligantes , Bicamadas Lipídicas/química , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Desnaturação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Temperatura
6.
Biochim Biophys Acta ; 1828(11): 2544-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23747684

RESUMO

Receptors of the Cys-loop family are central to neurotransmission and primary therapeutic targets. In order to decipher their gating and modulation mechanisms, structural data is essential. However, structural studies require large amounts of pure, functional receptors. Here, we present the expression and purification of the mouse serotonin 5-HT3 receptor to high purity and homogeneity levels. Inducible expression in human embryonic kidney 293 cells in suspension cultures with orbital shaking resulted in yields of 6-8mg receptor per liter of culture. Affinity purification using a strep tag provided pure protein in active form. Further deglycosylation and removal of the purification tag led to a pentameric receptor after size-exclusion chromatography, at the milligram scale. This material is suitable for crystallography, as demonstrated by X-ray diffraction of receptor crystals at low resolution.


Assuntos
Receptores 5-HT3 de Serotonina/isolamento & purificação , Animais , Cromatografia de Afinidade , Cromatografia em Gel , Cristalização , Eletroforese em Gel de Poliacrilamida , Glicosilação , Camundongos , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
7.
Nano Lett ; 12(1): 370-5, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149182

RESUMO

A central goal in bioanalytics is to determine the concentration of and interactions between biomolecules. Nanotechnology allows performing such analyses in a highly parallel, low-cost, and miniaturized fashion. Here we report on label-free volume, concentration, and mobility analysis of single protein molecules and nanoparticles during their diffusion through a subattoliter detection volume, confined by a 100 nm aperture in a thin gold film. A high concentration of small fluorescent molecules renders the aqueous solution in the aperture brightly fluorescent. Nonfluorescent analytes diffusing into the aperture displace the fluorescent molecules in the solution, leading to a decrease of the detected fluorescence signal, while analytes diffusing out of the aperture return the fluorescence level. The resulting fluorescence fluctuations provide direct information on the volume, concentration, and mobility of the nonfluorescent analytes through fluctuation analysis in both time and amplitude.


Assuntos
Nanopartículas/química , Nanopartículas/ultraestrutura , Nanotecnologia/métodos , Proteínas/isolamento & purificação , Proteínas/ultraestrutura , Espectrometria de Fluorescência/métodos , Ultrafiltração/métodos , Tamanho da Partícula , Porosidade , Conformação Proteica
8.
Elife ; 82019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31794382

RESUMO

The pioneer activity of transcription factors allows for opening of inaccessible regulatory elements and has been extensively studied in the context of cellular differentiation and reprogramming. In contrast, the function of pioneer activity in self-renewing cell divisions and across the cell cycle is poorly understood. Here we assessed the interplay between OCT4 and SOX2 in controlling chromatin accessibility of mouse embryonic stem cells. We found that OCT4 and SOX2 operate in a largely independent manner even at co-occupied sites, and that their cooperative binding is mostly mediated indirectly through regulation of chromatin accessibility. Controlled protein degradation strategies revealed that the uninterrupted presence of OCT4 is required for post-mitotic re-establishment and interphase maintenance of chromatin accessibility, and that highly OCT4-bound enhancers are particularly vulnerable to transient loss of OCT4 expression. Our study sheds light on the constant pioneer activity required to maintain the dynamic pluripotency regulatory landscape in an accessible state.


Assuntos
Ciclo Celular/fisiologia , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Divisão Celular/fisiologia , Linhagem Celular , Ácidos Indolacéticos/farmacologia , Interfase , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo
9.
Nat Commun ; 10(1): 487, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700703

RESUMO

Mammalian transcription factors (TFs) differ broadly in their nuclear mobility and sequence-specific/non-specific DNA binding. How these properties affect their ability to occupy specific genomic sites and modify the epigenetic landscape is unclear. The association of TFs with mitotic chromosomes observed by fluorescence microscopy is largely mediated by non-specific DNA interactions and differs broadly between TFs. Here we combine quantitative measurements of mitotic chromosome binding (MCB) of 501 TFs, TF mobility measurements by fluorescence recovery after photobleaching, single molecule imaging of DNA binding, and mapping of TF binding and chromatin accessibility. TFs associating to mitotic chromosomes are enriched in DNA-rich compartments in interphase and display slower mobility in interphase and mitosis. Remarkably, MCB correlates with relative TF on-rates and genome-wide specific site occupancy, but not with TF residence times. This suggests that non-specific DNA binding properties of TFs regulate their search efficiency and occupancy of specific genomic sites.


Assuntos
Cromatina/metabolismo , Cromossomos/metabolismo , Interfase/fisiologia , Mitose/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Cromossomos/genética , DNA/genética , DNA/metabolismo , Humanos , Interfase/genética , Mitose/genética , Ligação Proteica , Fatores de Transcrição/genética
10.
Cell Chem Biol ; 25(1): 51-56.e6, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29174541

RESUMO

The regulation of fundamental processes such as gene expression or cell differentiation involves chromatin states, demarcated by combinatorial histone post-translational modification (PTM) patterns. The subnuclear organization and dynamics of chromatin states is not well understood, as tools for their detection and modulation in live cells are lacking. Here, we report the development of genetically encoded chromatin-sensing multivalent probes, cMAPs, selective for bivalent chromatin, a PTM pattern associated with pluripotency in embryonic stem cells (ESCs). cMAPs were engineered from a set of PTM-binding (reader) proteins and optimized using synthetic nucleosomes carrying defined PTMs. Applied in live ESCs, cMAPs formed discrete subnuclear foci, revealing the organization of bivalent chromatin into local clusters. Moreover, cMAPs enabled direct monitoring of the loss of bivalency upon treatment with small-molecule epigenetic modulators. cMAPs thus provide a versatile platform to monitor chromatin state dynamics in live cells.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Histonas/metabolismo , Proteínas Luminescentes/metabolismo , Engenharia de Proteínas , Cromatina/genética , Humanos , Proteínas Luminescentes/genética , Estrutura Molecular , Processamento de Proteína Pós-Traducional
11.
Cell Cycle ; 16(7): 601-606, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28166426

RESUMO

The ability of some transcription factors to remain bound to specific genes on condensed mitotic chromosomes has been suggested to play a role in their rapid transcriptional reactivation upon mitotic exit. We have recently shown that SOX2 and OCT4 remain associated to mitotic chromosomes, and that depletion of SOX2 at the mitosis-G1 (M-G1) transition impairs its ability to maintain pluripotency and drive neuroectodermal commitment. Here we report on the role of SOX2 at the M-G1 transition in regulating transcriptional activity of embryonic stem cells. Using single cell time-lapse analysis of reporter constructs for STAT3 and SOX2/OCT4 activity, we show that SOX2/OCT4 do not lead to more rapid transcriptional reactivation in G1 than STAT3, a transcription factor that is excluded from mitotic chromosomes. We also report that only few endogenous target genes show decreased pre-mRNA levels after mitotic exit or in other cell cycle phases in the absence of SOX2 at the M-G1 transition. This suggests that bookmarked SOX2 target genes are not differently regulated than non-bookmarked target genes, and we discuss an alternative hypothesis on how mitotic bookmarking by SOX2 and other sequence-specific transcription factors could be involved in transcriptional regulation.


Assuntos
Regulação da Expressão Gênica , Mitose/genética , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Animais , Éxons/genética , Íntrons/genética , Luciferases/metabolismo , Camundongos , Células NIH 3T3 , Nocodazol/farmacologia , Plasmídeos/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Methods Mol Biol ; 1635: 139-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755368

RESUMO

There is growing interest in the use of mammalian protein expression systems, and in the use of antibody-derived chaperones, for structural studies. Here, we describe protocols ranging from the production of recombinant membrane proteins in stable inducible cell lines to biophysical characterization of purified membrane proteins in complex with llama antibody domains. These protocols were used to solve the structure of the mouse 5-HT3 serotonin receptor but are of broad applicability for crystallization or cryo-electron microscopy projects.


Assuntos
Anticorpos/metabolismo , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Camelus , Linhagem Celular , Microscopia Crioeletrônica , Cristalografia por Raios X , Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estabilidade Proteica , Receptores 5-HT3 de Serotonina/genética , Proteínas Recombinantes/química
13.
Structure ; 24(1): 165-170, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26724993

RESUMO

The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Receptores 5-HT3 de Serotonina/química , Sequência de Aminoácidos , Animais , Camundongos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfolipídeos/química , Multimerização Proteica , Estrutura Terciária de Proteína
14.
J Biol Chem ; 279(51): 53346-52, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15452106

RESUMO

Sequential stages in the life cycle of the ionotropic 5-HT(3) receptor (5-HT(3)R) were resolved temporally and spatially in live cells by multicolor fluorescence confocal microscopy. The insertion of the enhanced cyan fluorescent protein into the large intracellular loop delivered a fluorescent 5-HT(3)R fully functional in terms of ligand binding specificity and channel activity, which allowed for the first time a complete real-time visualization and documentation of intracellular biogenesis, membrane targeting, and ligand-mediated internalization of a receptor belonging to the ligand-gated ion channel superfamily. Fluorescence signals of newly expressed receptors were detectable in the endoplasmic reticulum about 3 h after transfection onset. At this stage receptor subunits assembled to form active ligand binding sites as demonstrated in situ by binding of a fluorescent 5-HT(3)R-specific antagonist. After novel protein synthesis was chemically blocked, the 5-HT(3) R populations in the endoplasmic reticulum and Golgi cisternae moved virtually quantitatively to the cell surface, indicating efficient receptor folding and assembly. Intracellular 5-HT(3) receptors were trafficking in vesicle-like structures along microtubules to the cell surface at a velocity generally below 1 mum/s and were inserted into the plasma membrane in a characteristic cluster distribution overlapping with actin-rich domains. Internalization of cell surface 5-HT(3) receptors was observed within minutes after exposure to an extracellular agonist. Our orchestrated use of spectrally distinguishable fluorescent labels for the receptor, its cognate ligand, and specific organelle markers can be regarded as a general approach allowing subcellular insights into dynamic processes of membrane receptor trafficking.


Assuntos
Endocitose , Transporte Proteico , Receptores 5-HT3 de Serotonina/metabolismo , Actinas/metabolismo , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , DNA/metabolismo , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lasers , Ligantes , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa