Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7817): 560-566, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699397

RESUMO

There are concerns that recent climate change is altering the frequency and magnitude of river floods in an unprecedented way1. Historical studies have identified flood-rich periods in the past half millennium in various regions of Europe2. However, because of the low temporal resolution of existing datasets and the relatively low number of series, it has remained unclear whether Europe is currently in a flood-rich period from a long-term perspective. Here we analyse how recent decades compare with the flood history of Europe, using a new database composed of more than 100 high-resolution (sub-annual) historical flood series based on documentary evidence covering all major regions of Europe. We show that the past three decades were among the most flood-rich periods in Europe in the past 500 years, and that this period differs from other flood-rich periods in terms of its extent, air temperatures and flood seasonality. We identified nine flood-rich periods and associated regions. Among the periods richest in floods are 1560-1580 (western and central Europe), 1760-1800 (most of Europe), 1840-1870 (western and southern Europe) and 1990-2016 (western and central Europe). In most parts of Europe, previous flood-rich periods occurred during cooler-than-usual phases, but the current flood-rich period has been much warmer. Flood seasonality is also more pronounced in the recent period. For example, during previous flood and interflood periods, 41 per cent and 42 per cent of central European floods occurred in summer, respectively, compared with 55 per cent of floods in the recent period. The exceptional nature of the present-day flood-rich period calls for process-based tools for flood-risk assessment that capture the physical mechanisms involved, and management strategies that can incorporate the recent changes in risk.

2.
Sci Data ; 10(1): 44, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658229

RESUMO

There is a growing need for past weather and climate data to support science and decision-making. This paper describes the compilation and construction of a global multivariable (air temperature, pressure, precipitation sum, number of precipitation days) monthly instrumental climate database that encompasses a substantial body of the known early instrumental time series. The dataset contains series compiled from existing databases that start before 1890 (though continuing to the present) as well as a large amount of newly rescued data. All series underwent a quality control procedure and subdaily series were processed to monthly mean values. An inventory was compiled, and the collection was deduplicated based on coordinates and mutual correlations. The data are provided in a common format accompanied by the inventory. The collection totals 12452 meteorological records in 118 countries. The data can be used for climate reconstructions and analyses. It is the most comprehensive global monthly climate dataset for the preindustrial period so far.

3.
Int J Biometeorol ; 56(1): 153-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21298448

RESUMO

Numerous phenology models developed to predict the budburst date of trees have been merged into one Unified model (Chuine, 2000, J. Theor. Biol. 207, 337-347). In this study, we tested a simplified version of the Unified model (Unichill model) on six woody species. Budburst and temperature data were available for five sites across Belgium from 1957 to 1995. We calibrated the Unichill model using a Bayesian calibration procedure, which reduced the uncertainty of the parameter coefficients and quantified the prediction uncertainty. The model performance differed among species. For two species (chestnut and black locust), the model showed good performance when tested against independent data not used for calibration. For the four other species (beech, oak, birch, ash), the model performed poorly. Model performance improved substantially for most species when using site-specific parameter coefficients instead of across-site parameter coefficients. This suggested that budburst is influenced by local environment and/or genetic differences among populations. Chestnut, black locust and birch were found to be temperature-driven species, and we therefore analyzed the sensitivity of budburst date to forcing temperature in those three species. Model results showed that budburst advanced with increasing temperature for 1-3 days °C(-1), which agreed with the observed trends. In synthesis, our results suggest that the Unichill model can be successfully applied to chestnut and black locust (with both across-site and site-specific calibration) and to birch (with site-specific calibration). For other species, temperature is not the only determinant of budburst and additional influencing factors will need to be included in the model.


Assuntos
Flores/fisiologia , Magnoliopsida/fisiologia , Modelos Biológicos , Teorema de Bayes , Bélgica , Clima , Temperatura , Árvores/fisiologia
4.
Int J Biometeorol ; 55(6): 753-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21713602

RESUMO

Mankind has observed and documented life cycle stages of plants and animals for a long time. However, it was comparatively recently that the newly emerging science was given its name. The name of Charles Morren and the year 1853 are being cited, although not frequently. Exact information is hardly known among present-day phenologists, yet new evidence shows that the term "phenology" was already in use in 1849. In the early 1840s, physicist and astronomer Adolphe Quetelet set up an observational network named "Observations of periodical Phenomena of the Animal and Vegetable Kingdom" and issued instructions for it. Even though biologist Charles Morren welcomed Quetelet's initiative, differences between Morren and Quentlet regarding the instructions for the observations and the potential results soon arose and a debate started, which lasted for nearly 10 years. In the wake of these disagreements, Morren was compelled to create a new term to denote his ideas on "periodical phenomena". At first, he temporally used the word anthochronology, but in the end he coined the word phenology. The term was first used in a public lecture at the Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique' in Brussels on 16 December 1849, and simultaneously in the December 1849 issue of volume V of the Annales de la Société royale d'Agriculture et de Botanique de Gand. One had to wait until 1853 before the new name appeared in the title of one of Morren's publications. Based on evidence from archives and original publications, we trace the 10-year-long scientific debate between Morren and Quetelet. Morren states his biologist's view on the subject and extends the more climate-related definition of Quetelet of "periodical phenomena".


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Pesquisadores , Verduras/fisiologia , Animais , Bélgica , Viés , Cronologia como Assunto , Mudança Climática , Monitoramento Ambiental/história , História do Século XIX , Humanos , Publicações , Verduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa