Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Am Chem Soc ; 144(8): 3442-3448, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171584

RESUMO

Recently, the formation of the ceramic-ionic liquid composite has attracted huge interest in the scientific community. In this work, we investigated the chemical reactions occurring between NASICON LAGP ceramic electrolyte and ionic liquid pyr13TFSI. This study allowed us to identify the cation exchange reaction pyr13-Li occurring on the LAGP surface, forming a LiTFSI salt that was detected by the nuclear magnetic resonance analysis. In addition, using 6Li foils, we succeeded in demonstrating that both LAGP and LiTFSI:pyr13TFSI participate in the diffusion of Li ions by the formation of an ionic bridge between two species.


Assuntos
Líquidos Iônicos , Cátions , Eletrólitos , Lítio
2.
Nano Lett ; 20(3): 1607-1613, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017575

RESUMO

We present the first results of in situ scanning electron microscopy (SEM) of an all-solid Li battery with a nickel-manganese-cobalt-oxide (NMC-622) cathode at 50 °C and an operating voltage of 2.7-4.3 V. Experiments were conducted under a constant current at several C rates (nC rate: cycling in 1/n h): C/12, C/6, and C/3. The microstructure evolution during cycling was monitored by continuous secondary electron imaging. We found that the chemical degradation of the solid polymer electrolyte (SPE) was the main mechanism for battery failure. This degradation was observed in the form of a gradual thinning of the SPE as a function of cycling time, resulting in gas generation from the cell. We also present various dynamic electrochemical and mechanical phenomena, as observed by SEM images, and compare the performance of this battery with that of an all-solid Li battery with a LiFePO4 cathode.

3.
Microsc Microanal ; 26(3): 484-496, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32456721

RESUMO

In electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.

4.
Microsc Microanal ; 26(4): 741-749, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32406368

RESUMO

Accurate elemental quantification of materials by X-ray detection techniques in electron microscopes or microprobes can only be carried out if the appropriate mass absorption coefficients (MACs) are known. With continuous advancements in experimental techniques, databases of MACs must be expanded in order to account for new detection limits. Soft X-ray emission spectroscopy (SXES) is a characterization technique that can detect emitted X-rays whose energies are in the range of 10 eV to 2 keV by using a varied-line-spaced grating. Transitions producing soft X-rays can be detected and accurate MACs are required for use in quantification. This work uses Monte Carlo modeling coupled with multivoltage SXES measurements in an electron probe micro-analyzer (EPMA) to compute MACs for the L2,3-M and Li Kα transitions in a variety of aluminum alloys. Electron depth distribution curves obtained by the software MC X-ray are used in a parametrized fitting equation. The MACs are calculated using a least-squares regression analysis. It is shown that X-ray distribution cross-sections at such low energies need to take into account additional contributions, such as Coster­Kronig transitions, Auger yields, and wave function effects in order to be accurate.

5.
Microsc Microanal ; 25(3): 735-742, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30973124

RESUMO

Due to recent advances in modeling the production of characteristic X-rays, Monte Carlo simulation of electron-solid interactions can provide improved quantitative estimates of X-ray intensities for both homogeneous and heterogeneous interaction volumes. In the case of homogeneous materials, these modeled X-ray intensities can predict with excellent accuracy, matrix corrections for arbitrary compositions, arbitrary emission lines, and electron energies. By pre-calculating these Monte Carlo X-ray intensities for pure element standards and a range of compositions of binary systems, we can derive matrix corrections for complex compositions in real-time by parameterizing these k-ratios as the so-called alpha factors. This method allows one to perform Monte Carlo-based bulk matrix corrections in seconds for arbitrary and complex compositions (with two or more elements), by combining these binary alpha factors using the so-called beta expression. We are systematically calculating X-ray intensities for 11 compositions from 1 to 99 wt% for binary pairs of all emitters and absorbers in the periodic table, for the main emission lines (Kα, Kß, Lα, Lß, Mα, and Mß) at beam energies from 5 to 50 keV, using Monte Carlo calculations based on a modified PENELOPE electron-photon transport code, although any other Monte Carlo software could also be utilized. Comparison of k-ratios calculated with the proposed method and experimental k-ratios from the Pouchou and Pichoir database suggest improvements over typical φ(ρz) methods. Additional comparisons with k-ratio measurements from more complex compositions would be ideal, but our testing of the additivity of the beta equation suggests that arbitrary compositions can be handled as well, except in cases of extreme fluorescence or absorption.

6.
Microsc Microanal ; 25(1): 58-69, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30714545

RESUMO

The f-ratio quantitative X-ray microanalysis method has been recently developed for binary systems based on a scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) system. This method incorporates traditional EDS experiments and Monte Carlo simulations, and calibration factors are calculated with standard samples to evaluate the differences between them. In this work, the f-ratio method was extended to Mg-Al-Zn multi-element systems using a cold field emission SEM and a tungsten emission SEM. Results show that the stability of the beam current does not influence the f-ratio quantification accuracy. Thus, the f-ratio method is suitable for quantitative X-ray mapping with a long-time acquisition or even an unstable beam current. Comparing with other quantitative techniques including the routine standardless analysis and the standard-based k-ratio method, the f-ratio method is a simple and accurate quantification method.

7.
Microsc Microanal ; 25(1): 92-104, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30869578

RESUMO

Secondary fluorescence effects are important sources of characteristic X-ray emissions, especially for materials with complicated geometries. Currently, three approaches are used to calculate fluorescence X-ray intensities. One is using Monte Carlo simulations, which are accurate but have drawbacks such as long computation times. The second one is to use analytical models, which are computationally efficient, but limited to specific geometries. The last approach is a hybrid model, which combines Monte Carlo simulations and analytical calculations. In this article, a program is developed by combining Monte Carlo simulations for X-ray depth distributions and an analytical model to calculate the secondary fluorescence. The X-ray depth distribution curves of both the characteristic and bremsstrahlung X-rays obtained from Monte Carlo program MC X-ray allow us to quickly calculate the total fluorescence X-ray intensities. The fluorescence correction program can be applied to both bulk and multilayer materials. Examples for both cases are shown. Simulated results of our program are compared with both experimental data from the literature and simulation data from PENEPMA and DTSA-II. The practical application of the hybrid model is presented by comparing with the complete Monte Carlo program.

8.
Microsc Microanal ; 25(4): 866-873, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31122303

RESUMO

A technique to characterize the native passivation layer (NPL) on pure lithium metal foils in a scanning electron microscope (SEM) is described in this paper. Lithium is a very reactive metal, and consequently, observing and quantifying its properties in a SEM is often compromised by rapid oxidation. In this work, a pure lithium energy-dispersive x-ray spectrum is obtained for the first time in a high vacuum SEM using a cold stage/cold trap with liquid nitrogen reservoir outside the SEM chamber. A nanomanipulator (OmniProbe 400) inside the microscope combined with x-ray microanalysis and windowless energy dispersive spectrometer is used to fully characterize the NPL of lithium metal and some of its alloys by a mechanical removal procedure. The results show that the native films of pure lithium and its alloys are composed of a thin (25 nm) outer layer that is carbon-rich and an inner layer containing a significant amount of oxygen. Differences in thickness between laminated and extruded samples are observed and vary depending on the alloy composition.

9.
Nano Lett ; 18(12): 7583-7589, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462516

RESUMO

Li metal batteries suffer from dendrite formation which causes short circuit of the battery. Therefore, it is important to understand the chemical composition and growth mechanism of dendrites that limit battery efficiency and cycle life. In this study, in situ scanning electron microscopy was employed to monitor the cycling behavior of all-solid Li metal batteries with LiFePO4 cathodes. Chemical analyses of the dendrites were conducted using a windowless energy dispersive spectroscopy detector, which showed that the dendrites are not metallic lithium as universally recognized. Our results revealed the carbide nature of the dendrites with a hollow morphology and hardness greater than that of pure lithium. These carbide-based dendrites were able to perforate through the polymer, which was confirmed by milling the polymer using focused ion beam. It was also shown that applying pressure on the battery can suppress growth of the dendrites.

10.
Microsc Microanal ; 29(Supplement_1): 470-471, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613103
11.
Microsc Microanal ; 24(1): 8-16, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485023

RESUMO

The spatial resolution of aberration-corrected annular dark field scanning transmission electron microscopy was studied as function of the vertical position z within a sample. The samples consisted of gold nanoparticles (AuNPs) positioned in different horizontal layers within aluminum matrices of 0.6 and 1.0 µm thickness. The highest resolution was achieved in the top layer, whereas the resolution was reduced by beam broadening for AuNPs deeper in the sample. To examine the influence of the beam broadening, the intensity profiles of line scans over nanoparticles at a certain vertical location were analyzed. The experimental data were compared with Monte Carlo simulations that accurately matched the data. The spatial resolution was also calculated using three different theoretical models of the beam blurring as function of the vertical position within the sample. One model considered beam blurring to occur as a single scattering event but was found to be inaccurate for larger depths of the AuNPs in the sample. Two models were adapted and evaluated that include estimates for multiple scattering, and these described the data with sufficient accuracy to be able to predict the resolution. The beam broadening depended on z 1.5 in all three models.

12.
Microsc Microanal ; 24(3): 238-248, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29860961

RESUMO

A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.

13.
Microsc Microanal ; 19(6): 1688-97, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23981287

RESUMO

A forescatter electron detector (FSED) was used to acquire dark-field micrographs (DF-FSED) on thin specimens with a scanning electron microscope. The collection angles were adjusted with the detector distance from the beam axis, which is similar to the camera length of the scanning transmission electron microscope annular DF detectors. The DF-FSED imaging resolution was calculated with SMART-J on an aluminum alloy and carbon nanotubes (CNTs) decorated with platinum nanoparticles. The resolution was three to six times worse than with bright-field imaging. Measurements of nanometer-size objects showed a similar feature size in DF-FSED imaging despite a signal-to-noise ratio 12 times smaller. Monte Carlo simulations were used to predict the variation of the contrast of a CNT/Fe/Pt system as a function of the collection angles. It was constant for very high collection angles (>450 mrad) and confirmed experimentally. The reverse contrast between carbon black particles and the smallest titanium dioxide (TiO2) nanoparticles was predicted by Monte Carlo simulations and observed in the DF-FSED micrograph of a battery electrode coating. However, segmentation of the micrograph was not able to isolate the TiO2 nanoparticle phase because of the close contrast of small TiO2 nanoparticles compared to the C black particles.

14.
Microsc Microanal ; 19(1): 93-101, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23290505

RESUMO

The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

15.
Microsc Microanal ; 18(3): 582-90, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22564444

RESUMO

Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 µm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens.

16.
Microsc Microanal ; 18(3): 628-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22571887

RESUMO

The relation between probe size and spatial resolution of backscattered electron (BSE) images was studied. In addition, the effect of the accelerating voltage, the current intensity and the sample geometry and composition were analyzed. An image synthesis method was developed to generate the images from backscattered electron coefficients obtained from Monte Carlo simulations. Spatial resolutions of simulated images were determined with the SMART-J method, which is based on the Fourier transform of the image. The resolution can be improved by either increasing the signal or decreasing the noise of the backscattered electron image. The analyses demonstrate that using a probe size smaller than the size of the observed object (sample features) does not improve the spatial resolution. For a probe size larger than the feature size, the spatial resolution is proportional to the probe size.

17.
Microsc Microanal ; 18(6): 1220-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23146129

RESUMO

The Monte Carlo software CASINO has been expanded with new modules for the simulation of complex beam scanning patterns, for the simulation of cathodoluminescence (CL), and for the calculation of electron energy deposition in subregions of a three-dimensional (3D) volume. Two examples are presented of the application of these new capabilities of CASINO. First, the CL emission near threading dislocations in gallium nitride (GaN) was modeled. The CL emission simulation of threading dislocations in GaN demonstrated that a better signal-to-noise ratio was obtained with lower incident electron energy than with higher energy. Second, the capability to simulate the distribution of the deposited energy in 3D was used to determine exposure parameters for polymethylmethacrylate resist using electron-beam lithography (EBL). The energy deposition dose in the resist was compared for two different multibeam EBL schemes by changing the incident electron energy.

18.
Ultramicroscopy ; 219: 113117, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32987247

RESUMO

Current quantitative X-ray microanalysis methods are only available for homogeneous materials. This paper presents a newly developed inverse modeling algorithm to determine both the structure and composition of two-dimensional (2D) heterogeneous materials from a series of X-ray intensity measurements under different beam energies and beam positions. It utilizes an iterative process of forward modeling to determine the optimal specimen to minimize the relative differences between the simulated and experimental characteristic X-ray intensities. The Monte Carlo method is used for the forward modeling to predict the X-ray radiation for a given specimen and experimental setup. Several examples of applications are presented for different types of samples with one-dimensional (1D) and 2D structures, in which the simulated X-ray intensities from phantom samples are used as input. Most of the results obtained from our algorithm agree well with the phantom samples. Some discrepancies are found for the voxels located at deeper depths of the 2D samples. And the discrepancies may be attributed to errors from the Monte Carlo simulations and from the variation of the X-ray range with beam energy. As a proof-of-concept work, this paper confirms the feasibility of our inverse modeling algorithm applied to 2D heterogeneous materials.

19.
Sci Adv ; 6(50)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33298450

RESUMO

Li-10 wt % Mg alloy (Li-10 Mg) is used as an anode material for a solid-state battery with excellent electrochemical performance and no evidence of dendrite formation during cycling. Thermal treatment of Li metal during manufacturing improves the interfacial contact between a Li metal electrode and solid electrolyte to achieve an all solid-state battery with increased performance. To understand the properties of the alloy passivation layer, this paper presents the first direct observation of its evolution at elevated temperatures (up to 325°C) by in situ scanning electron microscopy. We found that the morphology of the surface passivation layer was unchanged above the alloy melting point, while the bulk of the material below the surface was melted at the expected melting point, as confirmed by in situ electron backscatter diffraction. In situ heat treatment of Li-based materials could be a key method to improve battery performance.

20.
Sci Rep ; 10(1): 18410, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110177

RESUMO

Dendrite formation, which could cause a battery short circuit, occurs in batteries that contain lithium metal anodes. In order to suppress dendrite growth, the use of electrolytes with a high shear modulus is suggested as an ionic conductive separator in batteries. One promising candidate for this application is Li7La3Zr2O12 (LLZO) because it has excellent mechanical properties and chemical stability. In this work, in situ scanning electron microscopy (SEM) technique was employed to monitor the interface behavior between lithium metal and LLZO electrolyte during cycling with pressure. Using the obtained SEM images, videos were created that show the inhomogeneous dissolution and deposition of lithium, which induce dendrite growth. The energy dispersive spectroscopy analyses of dendrites indicate the presence of Li, C, and O elements. Moreover, the cross-section mapping comparison of the LLZO shows the inhomogeneous distribution of La, Zr, and C after cycling that was caused by lithium loss near the Li electrode and possible side reactions. This work demonstrates the morphological and chemical evolution that occurs during cycling in a symmetrical Li-Li cell that contains LLZO. Although the superior mechanical properties of LLZO make it an excellent electrolyte candidate for batteries, the further improvement of the electrochemical stabilization of the garnet-lithium metal interface is suggested.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa