Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
N Engl J Med ; 391(5): 422-433, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804512

RESUMO

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).


Assuntos
Autoanticorpos , Proteínas de Membrana , Podócitos , Adulto , Idoso , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biópsia , Modelos Animais de Doenças , Glomerulonefrite por IGA/sangue , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/patologia , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/imunologia , Glomerulosclerose Segmentar e Focal/patologia , Nefrite Lúpica/sangue , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Proteínas de Membrana/imunologia , Nefrose Lipoide/sangue , Nefrose Lipoide/imunologia , Nefrose Lipoide/patologia , Síndrome Nefrótica/sangue , Síndrome Nefrótica/imunologia , Síndrome Nefrótica/patologia , Podócitos/imunologia , Podócitos/patologia
2.
Plant Cell ; 36(9): 3260-3276, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38923940

RESUMO

Secreted immune proteases "Required for Cladosporium resistance-3" (Rcr3) and "Phytophthora-inhibited protease-1" (Pip1) of tomato (Solanum lycopersicum) are both inhibited by Avirulence-2 (Avr2) from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signaling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signaling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signaling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops.


Assuntos
Cladosporium , Peptídeo Hidrolases , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cladosporium/patogenicidade , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Imunidade Vegetal/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Bioengenharia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Transdução de Sinais , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Nicotiana/imunologia
3.
Circulation ; 149(11): 860-884, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152989

RESUMO

BACKGROUND: SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS: To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS: Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS: SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.


Assuntos
Cresóis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Inibidores do Transportador 2 de Sódio-Glicose , Ésteres do Ácido Sulfúrico , Humanos , Camundongos , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Ácido Úrico , Triptofano , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Proteômica , Toxinas Urêmicas , Células-Tronco Pluripotentes Induzidas/metabolismo , Glucose , Sódio/metabolismo , Diabetes Mellitus Tipo 2/complicações
4.
Plant J ; 116(6): 1681-1695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688791

RESUMO

Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform ß (AtLEGß) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGß and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGß. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGß suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGß regulation and its broader physiological significance.


Assuntos
Arabidopsis , Papaína , Papaína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantas/metabolismo
5.
Am J Physiol Renal Physiol ; 327(5): F822-F844, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39361723

RESUMO

Biobanking of tissue from clinically obtained kidney biopsies for later analysis with multiomic approaches, such as single-cell technologies, proteomics, metabolomics, and the different types of imaging, is an inevitable step to overcome the need of disease model systems and toward translational medicine. Hence, collection protocols that ensure integration into daily clinical routines by the usage of preservation media that do not require liquid nitrogen but instantly preserve kidney tissue for both clinical and scientific analyses are necessary. Thus, we modified a robust single-nucleus dissociation protocol for kidney tissue stored snap-frozen or in the preservation media RNAlater and CellCover. Using at first porcine kidney tissue as a surrogate for human kidney tissue, we conducted single-nucleus RNA sequencing with the widely recognized Chromium 10X Genomics platform. The resulting datasets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques such as proteomics, metabolomics, and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines, the preservation medium RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single-nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap-frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening up new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.NEW & NOTEWORTHY In this study, we addressed challenges in integrating clinically obtained kidney biopsies into everyday clinical routines. Using porcine kidneys, we evaluated preservation media (RNAlater and CellCover) versus snap freezing for multi-omics processing. Our analyses highlighted RNAlater's suitability for single-nucleus RNA sequencing, proteome analysis and histopathological evaluation. Only metabolomics are currently restricted to snap-frozen biopsies. Our research established a cryopreservation protocol that facilitates tissue biobanking for advancing precision medicine in nephrology.


Assuntos
Criopreservação , Rim , Metabolômica , Proteômica , Criopreservação/métodos , Humanos , Rim/metabolismo , Rim/patologia , Animais , Metabolômica/métodos , Proteômica/métodos , Suínos , Transcriptoma , Biópsia , Bancos de Espécimes Biológicos , Multiômica
6.
New Phytol ; 239(4): 1281-1299, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37320971

RESUMO

Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Floema/metabolismo , Proteômica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
7.
Postgrad Med J ; 99(1169): 183-188, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37222057

RESUMO

BACKGROUND AND AIMS: Appendiceal neoplasms are uncommon entities that are usually determined incidentally during the histopathological examination. Different techniques used for the macroscopic sampling of appendectomy material may affect the determinating neoplasms. MATERIALS AND METHODS: H&E-stained slides of 1280 cases who underwent appendectomy between 2013 and 2018 were reviewed retrospectively for histopathological features. RESULTS: Neoplasms were determined in 28 cases (3.09%); 1 lesion was observed in the proximal part of the appendix, 1 covering the entire length from proximal to distal and 26 in the distal part. In the 26 cases that observed in the distal part, the lesion was seen on both sides of the longitudinal section of the distal appendix in 20 cases, while it was seen on only one distal longitudinal section in the remaining 6 cases. CONCLUSION: The vast majority of appendiceal neoplasms are seen in the distal part of the appendix, and, in some cases, neoplasms might be seen on only one side of the distal section. Sampling only one-half of the distal part of the appendix, where tumours are most often observed, could result in some neoplasms being missed. Therefore, sampling the whole distal part would be more beneficial to determine small diameter tumours that do not create macroscopic findings.


Assuntos
Neoplasias do Apêndice , Humanos , Estudos Retrospectivos , Apendicectomia
8.
Med Princ Pract ; 32(6): 358-368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778333

RESUMO

OBJECTIVE: Appendiceal neoplasms (ANs) are rare tumors that are often discovered incidentally during histopathological examinations. The increasing incidence of ANs is a critical issue in the non-operative management of acute appendicitis. This study aimed to document the temporal trends over a 12-year period by analyzing the clinical presentation, imaging findings, and histopathological features of ANs. SUBJECTS AND METHODS: Health records of patients who underwent appendectomy from 2011 to 2022 were examined. Demographic and clinical data, laboratory results, imaging findings, and histopathological features were documented. The characteristics of both ANs and non-neoplastic cases were evaluated. RESULTS: A total of 22,304 cases were identified, of which 330 (1.5%) were diagnosed with ANs. The odds ratio for ANs increased with age, with the highest odds ratio observed in patients aged 70 or older. Receiver Operating Characteristic analysis showed that age and appendiceal diameter were significant predictors of ANs. An optimal age cut-off point of 28.5 years was determined, yielding a sensitivity of 72% and a specificity of 64%. For appendiceal diameter, the optimal cut-off was found to be 9.5 mm, exhibiting a sensitivity of 77% and a specificity of 56%. CONCLUSION: Although the incidence of ANs remains relatively low, a steady increase has been observed over the past decade. The increasing rate of ANs raises concerns regarding non-surgical management options. The results of this study highlight the importance of considering ANs as a potential diagnosis in older patients and in patients with an appendix diameter greater than 9.5 mm. These findings may have implications for treatment and management.


Assuntos
Neoplasias do Apêndice , Apendicite , Idoso , Humanos , Neoplasias do Apêndice/epidemiologia , Neoplasias do Apêndice/terapia , Neoplasias do Apêndice/patologia , Incidência , Apendicectomia , Apendicite/epidemiologia , Apendicite/terapia , Apendicite/diagnóstico , Doença Aguda , Estudos Retrospectivos
9.
Am J Physiol Renal Physiol ; 323(2): F182-F197, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796460

RESUMO

The podocyte is a key cell in maintaining renal filtration barrier integrity. Several recent studies have analyzed the genome and transcriptome in the podocyte at deep resolution. This avenue of "podocyte-ome" research was enabled by a variety of techniques, including 1) single-cell transcriptomics, 2) FACS with and without genetically encoded markers, and 3) deep proteomics. However, data across various omics techniques and studies are currently not well integrated with each other. Here, we aimed to establish a common, simplified knowledge base for the mouse podocyte-ome by integrating bulk RNA sequencing, bulk proteomics of FACS-sorted podocytes, and single-cell transcriptomics. Three publicly available datasets of each omics technique from different laboratories were bioinformatically integrated and visualized. Our approach not only revealed conserved processes of podocytes but also sheds light on the benefits and limitations of the used technologies. We identified that high expression of glycan glycosylphosphatidylinositol anchor synthesis and turnover, as well as retinol metabolism, were relatively understudied features of podocytes. In addition, actin-binding molecules were organized in a podocyte-specific manner, as evidenced by differential expression in podocytes compared with other glomerular cells. We compiled a Web-based "PodIent" application that illustrates the features of the integrated dataset. This enables user-driven exploratory analysis by querying genes of interest for podocyte identity in absolute and relative quantification while also linking to functional annotation using keywords, Gene Ontology terms, and gene set enrichments. This consensus draft is a first step toward common molecular omics knowledge of kidney cells.NEW & NOTEWORTHY Podocytes are key components of glomerular filtration and are affected in various kidney diseases. Here, we present an integrated, robust definition of molecular identity across proteomic, single-cell transcriptomics, and bulk transcriptomic studies on native mouse podocytes. We created the "PodIdent" app, a novel knowledge base promoting access to the presence and expression of specific proteins for podocytes.


Assuntos
Nefropatias , Podócitos , Animais , Consenso , Rim/metabolismo , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Podócitos/metabolismo , Proteômica
10.
Mol Cell Proteomics ; 19(8): 1330-1345, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32467259

RESUMO

The mammalian mitochondrial proteome consists of more than 1100 annotated proteins and their proteostasis is regulated by only a few ATP-dependent protease complexes. Technical advances in protein mass spectrometry allowed for detailed description of the mitoproteome from different species and tissues and their changes under specific conditions. However, protease-substrate relations within mitochondria are still poorly understood. Here, we combined Terminal Amine Isotope Labeling of Substrates (TAILS) N termini profiling of heart mitochondria proteomes isolated from wild type and Clpp-/- mice with a classical substrate-trapping screen using FLAG-tagged proteolytically active and inactive CLPP variants to identify new ClpXP substrates in mammalian mitochondria. Using TAILS, we identified N termini of more than 200 mitochondrial proteins. Expected N termini confirmed sequence determinants for mitochondrial targeting signal (MTS) cleavage and subsequent N-terminal processing after import, but the majority were protease-generated neo-N termini mapping to positions within the proteins. Quantitative comparison revealed widespread changes in protein processing patterns, including both strong increases or decreases in the abundance of specific neo-N termini, as well as an overall increase in the abundance of protease-generated neo-N termini in CLPP-deficient mitochondria that indicated altered mitochondrial proteostasis. Based on the combination of altered processing patterns, protein accumulation and stabilization in CLPP-deficient mice and interaction with CLPP, we identified OAT, HSPA9 and POLDIP2 and as novel bona fide ClpXP substrates. Finally, we propose that ClpXP participates in the cooperative degradation of UQCRC1. Together, our data provide the first landscape of the heart mitochondria N terminome and give further insights into regulatory and assisted proteolysis mediated by ClpXP.


Assuntos
Endopeptidase Clp/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteólise , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Endopeptidase Clp/deficiência , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Reprodutibilidade dos Testes , Especificidade por Substrato
11.
Childs Nerv Syst ; 38(6): 1201-1204, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34368893

RESUMO

Lipoblastoma is a rare benign tumor originating from adipose tissue, usually seen in infancy and early childhood. Here, we present a case of scalp lipoblastoma in a 4-month-old that we treated surgically and review the literature. Although lipoblastomas may be seen in various locations during infancy and early childhood, rarely, they can also develop in the scalp.


Assuntos
Lipoblastoma , Lipoma , Pré-Escolar , Humanos , Lactente , Lipoblastoma/diagnóstico por imagem , Lipoblastoma/patologia , Lipoblastoma/cirurgia , Lipoma/diagnóstico por imagem , Lipoma/patologia , Lipoma/cirurgia , Couro Cabeludo/patologia , Couro Cabeludo/cirurgia
12.
J Am Soc Nephrol ; 32(9): 2175-2193, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34074698

RESUMO

BACKGROUND: The glomerulus comprises podocytes, mesangial cells, and endothelial cells, which jointly determine glomerular filtration. Understanding this intricate functional unit beyond the transcriptome requires bulk isolation of these cell types for biochemical investigations. We developed a globally applicable tripartite isolation method for murine mesangial and endothelial cells and podocytes (timMEP). METHODS: We separated glomerular cell types from wild-type or mT/mG mice via a novel FACS approach, and validated their purity. Cell type proteomes were compared between strains, ages, and sex. We applied timMEP to the podocyte-targeting, immunologic, THSD7A-associated, model of membranous nephropathy. RESULTS: timMEP enabled protein-biochemical analyses of podocytes, mesangial cells, and endothelial cells derived from reporter-free mice, and allowed for the characterization of podocyte, endothelial, and mesangial proteomes of individual mice. We identified marker proteins for mesangial and endothelial proteins, and outlined protein-based, potential communication networks and phosphorylation patterns. The analysis detected cell type-specific proteome differences between mouse strains and alterations depending on sex, age, and transgene. After exposure to anti-THSD7A antibodies, timMEP resolved a fine-tuned initial stress response, chiefly in podocytes, that could not be detected by bulk glomerular analyses. The combination of proteomics with super-resolution imaging revealed a specific loss of slit diaphragm, but not of other foot process proteins, unraveling a protein-based mechanism of podocyte injury in this animal model. CONCLUSION: timMEP enables glomerular cell type-resolved investigations at the transcriptional and protein-biochemical level in health and disease, while avoiding reporter-based artifacts, paving the way toward the comprehensive and systematic characterization of glomerular cell biology.


Assuntos
Separação Celular/métodos , Glomerulonefrite Membranosa/patologia , Células Mesangiais , Podócitos , Proteoma , Animais , Separação Celular/economia , Modelos Animais de Doenças , Feminino , Glomerulonefrite Membranosa/etiologia , Glomerulonefrite Membranosa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
J Biol Chem ; 295(37): 13047-13064, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719006

RESUMO

The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform ß (AtLEGß) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGß is concentration independent. Additionally, in AtLEGß the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGß revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGß exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGß is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína Endopeptidases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo
14.
Anal Chem ; 93(13): 5596-5605, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33729755

RESUMO

Site-specific proteolytic processing is an important, irreversible post-translational protein modification with implications in many diseases. Enrichment of protein N-terminal peptides followed by mass spectrometry-based identification and quantification enables proteome-wide characterization of proteolytic processes and protease substrates but is challenged by the lack of specific annotation tools. A common problem is, for example, ambiguous matches of identified peptides to multiple protein entries in the databases used for identification. We developed MaxQuant Advanced N-termini Interpreter (MANTI), a standalone Perl software with an optional graphical user interface that validates and annotates N-terminal peptides identified by database searches with the popular MaxQuant software package by integrating information from multiple data sources. MANTI utilizes diverse annotation information in a multistep decision process to assign a conservative preferred protein entry for each N-terminal peptide, enabling automated classification according to the likely origin and determines significant changes in N-terminal peptide abundance. Auxiliary R scripts included in the software package summarize and visualize key aspects of the data. To showcase the utility of MANTI, we generated two large-scale TAILS N-terminome data sets from two different animal models of chemically and genetically induced kidney disease, puromycin adenonucleoside-treated rats (PAN), and heterozygous Wilms Tumor protein 1 mice (WT1). MANTI enabled rapid validation and autonomous annotation of >10 000 identified terminal peptides, revealing novel proteolytic proteoforms in 905 and 644 proteins, respectively. Quantitative analysis indicated that proteolytic activities with similar sequence specificity are involved in the pathogenesis of kidney injury and proteinuria in both models, whereas coagulation processes and complement activation were specifically induced after chemical injury.


Assuntos
Processamento de Proteína Pós-Traducional , Proteoma , Animais , Camundongos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteólise , Proteoma/metabolismo , Ratos
15.
Cell Tissue Res ; 385(2): 489-500, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33864499

RESUMO

Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.


Assuntos
Inflamação/patologia , Glomérulos Renais/patologia , Animais , Humanos , Proteólise
16.
J Exp Bot ; 72(9): 3455-3473, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33216923

RESUMO

The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex. Arabidopsis thaliana mutant seedlings with reduced FTSH12 abundance exhibited pale cotyledons and small, deformed chloroplasts with altered thylakoid structure. Mature plants retained these chloroplast defects, resulting in slightly variegated leaves and lower chlorophyll content. Label-free proteomics revealed strong changes in the proteome composition of FTSH12 knock-down seedlings, reflecting impaired plastid development. The composition of the translocon on the inner chloroplast membrane (TIC) protein import complex was altered, with coordinated reduction of the FtsH12-FtsHi complex subunits and accumulation of the 1 MDa TIC complex subunits TIC56, TIC214 and TIC22-III. FTSH12 overexpressor lines showed no obvious phenotype, but still displayed distinct differences in their proteome. N-terminome analyses further demonstrated normal proteolytic maturation of plastid-imported proteins irrespective of FTSH12 abundance. Together, our data suggest that FtsH12 has highest impact during seedling development; its abundance alters the plastid import machinery and impairs chloroplast development.


Assuntos
Proteases Dependentes de ATP , Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Proteínas de Membrana , Proteases Dependentes de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Membrana/genética , Metaloproteases/genética , Mutação
17.
J Exp Bot ; 72(9): 3410-3426, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33630999

RESUMO

Plants secrete various defence-related proteins into the apoplast, including proteases. Papain-like cysteine proteases (PLCPs) are central components of the plant immune system. To overcome plant immunity and successfully colonize their hosts, several plant pathogens secrete effector proteins inhibiting plant PLCPs. We hypothesized that not only pathogens, but also mutualistic microorganisms interfere with PLCP-meditated plant defences to maintain endophytic colonization with their hosts. Epichloë festucae forms mutualistic associations with cool season grasses and produces a range of secondary metabolites that protect the host against herbivores. In this study, we performed a genome-wide identification of Lolium perenne PLCPs, analysed their evolutionary relationship, and classified them into nine PLCP subfamilies. Using activity-based protein profiling, we identified four active PLCPs in the apoplast of L. perenne leaves that are inhibited during endophyte interactions. We characterized the L. perenne cystatin LpCys1 for its inhibitory capacity against ryegrass PLCPs. LpCys1 abundance is not altered during the mutualistic interaction and it mainly inhibits LpCP2. However, since the activity of other L. perenne PLCPs is not sensitive to LpCys1, we propose that additional inhibitors, likely of fungal origin, are involved in the suppression of apoplastic PLCPs during E. festucae infection.


Assuntos
Cisteína Proteases , Epichloe , Lolium , Proteínas de Plantas , Lolium/enzimologia , Simbiose
18.
Mol Cell Proteomics ; 18(11): 2335-2347, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31471496

RESUMO

Protein N termini unambiguously identify truncated, alternatively translated or modified proteoforms with distinct functions and reveal perturbations in disease. Selective enrichment of N-terminal peptides is necessary to achieve proteome-wide coverage for unbiased identification of site-specific regulatory proteolytic processing and protease substrates. However, many proteolytic processes are strictly confined in time and space and therefore can only be analyzed in minute samples that provide insufficient starting material for current enrichment protocols. Here we present High-efficiency Undecanal-based N Termini EnRichment (HUNTER), a robust, sensitive and scalable method for the analysis of previously inaccessible microscale samples. HUNTER achieved identification of >1000 N termini from as little as 2 µg raw HeLa cell lysate. Broad applicability is demonstrated by the first N-terminome analysis of sorted human primary immune cells and enriched mitochondrial fractions from pediatric cancer patients, as well as protease substrate identification from individual Arabidopsis thaliana wild type and Vacuolar Processing Enzyme-deficient mutant seedlings. We further implemented the workflow on a liquid handling system and demonstrate the feasibility of clinical degradomics by automated processing of liquid biopsies from pediatric cancer patients.


Assuntos
Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma/análise , Plântula/metabolismo , Animais , Arabidopsis/metabolismo , Criança , Humanos , Domínios Proteicos , Proteólise , Ratos , Ratos Wistar
19.
Postgrad Med J ; 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068778

RESUMO

BACKGROUND AND AIMS: Appendiceal neoplasms are uncommon entities that are usually determined incidentally during the histopathological examination. Different techniques used for the macroscopic sampling of appendectomy material may affect the determinating neoplasms. MATERIALS AND METHODS: H&E-stained slides of 1280 cases who underwent appendectomy between 2013 and 2018 were reviewed retrospectively for histopathological features. RESULTS: Neoplasms were determined in 28 cases (3.09%); 1 lesion was observed in the proximal part of the appendix, 1 covering the entire length from proximal to distal and 26 in the distal part. In the 26 cases that observed in the distal part, the lesion was seen on both sides of the longitudinal section of the distal appendix in 20 cases, while it was seen on only one distal longitudinal section in the remaining 6 cases. CONCLUSION: The vast majority of appendiceal neoplasms are seen in the distal part of the appendix, and, in some cases, neoplasms might be seen on only one side of the distal section. Sampling only one-half of the distal part of the appendix, where tumours are most often observed, could result in some neoplasms being missed. Therefore, sampling the whole distal part would be more beneficial to determine small diameter tumours that do not create macroscopic findings.

20.
Appl Soft Comput ; 103: 107160, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33584157

RESUMO

The new coronavirus, known as COVID-19, first emerged in Wuhan, China, and since then has been transmitted to the whole world. Around 34 million people have been infected with COVID-19 virus so far, and nearly 1 million have died as a result of the virus. Resource shortages such as test kits and ventilator have arisen in many countries as the number of cases have increased beyond the control. Therefore, it has become very important to develop deep learning-based applications that automatically detect COVID-19 cases using chest X-ray images to assist specialists and radiologists in diagnosis. In this study, we propose a new approach based on deep LSTM model to automatically identify COVID-19 cases from X-ray images. Contrary to the transfer learning and deep feature extraction approaches, the deep LSTM model is an architecture, which is learned from scratch. Besides, the Sobel gradient and marker-controlled watershed segmentation operations are applied to raw images for increasing the performance of proposed model in the pre-processing stage. The experimental studies were performed on a combined public dataset constituted by gathering COVID-19, pneumonia and normal (healthy) chest X-ray images. The dataset was randomly separated into two sections as training and testing data. For training and testing, these separations were performed with the rates of 80%-20%, 70%-30% and 60%-40%, respectively. The best performance was achieved with 80% training and 20% testing rate. Moreover, the success rate was 100% for all performance criteria, which composed of accuracy, sensitivity, specificity and F-score. Consequently, the proposed model with pre-processing images ensured promising results on a small dataset compared to big data. Generally, the proposed model can significantly improve the present radiology based approaches and it can be very useful application for radiologists and specialists to help them in detection, quantity determination and tracing of COVID-19 cases throughout the pandemic.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa