Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(7): e106151, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33616251

RESUMO

Interleukin (IL)-33 cytokine plays a critical role in allergic diseases and cancer. IL-33 also has a nuclear localization signal. However, the nuclear function of IL-33 and its impact on cancer is unknown. Here, we demonstrate that nuclear IL-33-mediated activation of SMAD signaling pathway in epithelial cells is essential for cancer development in chronic inflammation. Using RNA and ChIP sequencing, we found that nuclear IL-33 repressed the expression of an inhibitory SMAD, Smad6, by interacting with its transcription factor, RUNX2. IL-33 was highly expressed in the skin and pancreatic epithelial cells in chronic inflammation, leading to a markedly repressed Smad6 expression as well as dramatically upregulated p-SMAD2/3 and p-SMAD1/5 in the epithelial cells. Blocking TGF-ß/SMAD signaling attenuated the IL-33-induced cell proliferation in vitro and inhibited IL-33-dependent epidermal hyperplasia and skin cancer development in vivo. IL-33 and SMAD signaling were upregulated in human skin cancer, pancreatitis, and pancreatitis-associated pancreatic cancer. Collectively, our findings reveal that nuclear IL-33/SMAD signaling is a cell-autonomous tumor-promoting axis in chronic inflammation, which can be targeted by small-molecule inhibitors for cancer treatment and prevention.


Assuntos
Carcinogênese/metabolismo , Interleucina-33/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Proteína Smad6/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo
2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427591

RESUMO

Thymic stromal lymphopoietin (TSLP) overexpression is widely associated with atopy. However, TSLP is expressed in normal barrier organs, suggesting a homeostatic function. To determine the function of TSLP in barrier sites, we investigated the impact of endogenous TSLP signaling on the homeostatic expansion of CD4+ T cells in adult mice. Surprisingly, incoming CD4+ T cells induced lethal colitis in adult Rag1-knockout animals that lacked the TSLP receptor (Rag1KOTslprKO). Endogenous TSLP signaling was required for reduced CD4+ T cell proliferation, Treg differentiation, and homeostatic cytokine production. CD4+ T cell expansion in Rag1KOTslprKO mice was dependent on the gut microbiome. The lethal colitis was rescued by parabiosis between Rag1KOTslprKO and Rag1KO animals and wild-type dendritic cells (DCs) suppressed CD4+ T cell-induced colitis in Rag1KOTslprKO mice. A compromised T cell tolerance was noted in TslprKO adult colon, which was exacerbated by anti-PD-1 and anti-CTLA-4 therapy. These results reveal a critical peripheral tolerance axis between TSLP and DCs in the colon that blocks CD4+ T cell activation against the commensal gut microbiome.


Assuntos
Colite , Microbioma Gastrointestinal , Linfopoietina do Estroma do Timo , Animais , Camundongos , Linfócitos T CD4-Positivos , Diferenciação Celular , Citocinas/metabolismo , Células Dendríticas , Linfócitos T Reguladores , Linfopoietina do Estroma do Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa