Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 34: 115-126, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899493

RESUMO

BACKGROUND: Paeoniflorin, a monoterpene glycoside, exerts protective vascular effects, showing good antioxidant properties. However, whether Paeoniflorin has protective effect against the oxidative damage induced by advanced oxidation protein products (AOPPs) in Human umbilical vein endothelial cells (HUVECs) is unknown, as is the underlying mechanism. PURPOSE: The present study was designed to investigate the effect of Paeoniflorin on oxidative damage of HUVECs and elucidate its underlying molecular mechanisms. METHODS: The fluorescence intensity of 2', 7'-dichlorofluorescein-diacetate (DCFH-DA) staining was detected for intracellular reactive oxygen species (ROS) production. The increases mitochondrial membrane potential (MMP) was measured via flow cytometry and confocal microscopy using MitoTracker® Deep Red/ MitoTracker® Green staining. The intracellular adenosine triphosphate (ATP) was measured by ATP Determination Kit according to the manufacturer's protocol. Nox2, Nox4, hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and nuclear factor-κB (NF-κB) p65 expressions were detected by western blot. RESULTS: Our results showed that Paeoniflorin increases MMP and ATP levels of HUVECs induced by AOPPs, and attenuates NF-κB p65 expression on HUVECs might mainly result from its antioxidant capability by suppressing ROS production. Moreover, we also found that Paeoniflorin can suppress HIF-1α and VEGF protein expression through a decrease of ROS production via down-regulation of Nox2/Nox4 expression in HUVECs. AOPP-induced RAGE mRNA up-regulation was blocked by Paeoniflorin treatment in HUVECs. CONCLUSION: Our results provided the first experimental that Paeoniflorin protects against AOPP-induced oxidative damage in HUVECs, mainly through a mechanism involving a decrease in ROS production by the inhibition of Nox2/Nox4 and RAGE expression; restored ATP depletion and mitochondria dysfunction via ROS suppression; and down-regulated HIF-1α/VEGF, possibly via the ROS-NF-κB axis.


Assuntos
Antioxidantes/farmacologia , Glucosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Monoterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Benzoatos/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa