Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 104: 103981, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287810

RESUMO

Saccharomyces yeasts from different origins and species fermented in a semi-synthetic must containing aroma precursor of cv. Albariño and polyfunctional mercaptans precursors. The resulting wines were subjected to accelerate anoxic aging. Afterward, aroma profiles were analyzed by distinct gas chromatography methodologies. Cryotolerant strains showed better fermentation performances with significant differences in volatile and non-volatile fermentation products than Saccharomyces cerevisiae (S. cerevisiae). We suggested that the highest levels γ-butyrolactone and diethyl succinate in Saccharomyces uvarum (S. uvarum) strains, together with their substantial succinic acid yields, could be related to greater flux through the GABA shunt. These strains also had the highest production of ß-phenylethyl acetate, geraniol, and branched-chain ethyl esters. The latter compounds were highly increased by aging, while acetates and some terpenes decreased. S. kudriavzevii strains showed a remarkable ability to release polyfunctional mercaptans, with SK1 strain yielding up to 47-fold and 8-fold more 4-methyl-4-mercaptopentan-2-one (4MMP) than S. cerevisiae and S. uvarum strains, respectively. The wild S. cerevisiae beer isolate showed a particular aroma profile due to the highest production of ethyl 4-methylvalerate (lactic and fruity notes), γ-octalactone (coconut), and furfurylthiol (roasted coffee). The latter compound is possibly produced from the pentose phosphate pathway (PPP). Since erythritol, another PPP intermediate was largely produced by this strain.


Assuntos
Saccharomyces , Vinho , Odorantes/análise , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/análise
2.
Int J Food Microbiol ; 365: 109554, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35093767

RESUMO

Interest in the use of non-conventional yeasts in wine fermentation has been increased in the last years in the wine sector. The main objective of this manuscript was to explore the aromatic diversity produced by wild and non-wine strains of S. cerevisiae, S. eubayanus, S. kudriavzevii, and S. uvarum species in young and bottle-aged Tempranillo wines as well as evaluate their fermentation capacity and the yield on ethanol, glycerol, and organic acids, that can contribute to diminishing the effects of climate change on wines. S. uvarum strain U1 showed the highest ability to release or de novo produce monoterpenes, such as geraniol and citronellol, whose values were 1.5 and 3.5-fold higher than those of the wine S. cerevisiae strain. We found that compared to the normal values for red wines, ß-phenylethyl acetate was highly synthesized by U1 and E1 strains, achieving 1 mg/L. Additionally, after aging, wines of S. eubayanus strains contained the highest levels of this acetate. Malic acid was highly degraded by S. kudriavzevii yeasts, resulting in the highest yields of lactic acid (>5-fold) and ethyl lactate (>2.8-fold) in their wines. In aged wines, we observed that the modulating effects of yeast strain were very high in ß-ionone. S. uvarum strains U1 and BMV58 produced an important aging attribute, ethyl isobutyrate, which was highly enhanced during the aging. Also, the agave S. cerevisiae strain develops an essential aroma after aging, reaching the highest ethyl leucate contents. According to the results obtained, the use of wild non-wine strains of S. cerevisiae and strains of the cryotolerant species S. eubayanus, S. kudriavzevii, and S. uvarum in Tempranillo wine fermentation increase the aroma complexity. In addition, wines from S. kudriavzevii strains had twice additional glycerol, those from S. uvarum 4-fold more succinic acid, while wines from wild strains yielded 1% v/v less ethanol which may solve wine problems associated with climate change.


Assuntos
Saccharomyces , Vitis , Vinho , Fermentação , Odorantes/análise , Saccharomyces cerevisiae , Vinho/análise
3.
Microb Biotechnol ; 15(8): 2266-2280, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35485391

RESUMO

Non-wine yeasts could enhance the aroma and organoleptic profile of wines. However, compared to wine strains, they have specific intolerances to winemaking conditions. To solve this problem, we generated intra- and interspecific hybrids using a non-GMO technique (rare-mating) in which non-wine strains of S. uvarum, S. kudriavzevii and S. cerevisiae species were crossed with a wine S. cerevisiae yeast. The hybrid that inherited the wine yeast mitochondrial showed better fermentation capacities, whereas hybrids carrying the non-wine strain mitotype reduced ethanol levels and increased glycerol, 2,3-butanediol and organic acid production. Moreover, all the hybrids produced several fruity and floral aromas compared to the wine yeast: ß-phenylethyl acetate, isobutyl acetate, γ-octalactone, ethyl cinnamate in both varietal wines. Sc × Sk crosses produced three- to sixfold higher polyfunctional mercaptans, 4-mercapto-4-methylpentan-2-one (4MMP) and 3-mercaptohexanol (3MH). We proposed that the exceptional 3MH release observed in an S. cerevisiae × S. kudriavzevii hybrid was due to the cleavage of the non-volatile glutathione precursor (Glt-3MH) to detoxify the cell from the presence of methylglyoxal, a compound related to the high glycerol yield reached by this hybrid. In conclusion, hybrid generation allows us to obtain aromatically improved yeasts concerning their wine parent. In addition, they reduced ethanol and increased organic acids yields, which counteracts climate change effect on grapes.


Assuntos
Saccharomyces , Etanol , Fermentação , Glicerol , Saccharomyces/genética , Saccharomyces cerevisiae/genética
4.
Food Chem X ; 9: 100116, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33665608

RESUMO

Ten different Saccharomyces cerevisiae strains fermented semi-synthetic musts containing a Polyphenolic and Aroma Precursor Fraction (PAF) extracted from Tempranillo grapes. Aroma compounds were studied by Gas Chromatography (GC), GC-Olfactometry and GC-Mass Spectrometry (MS), during fermentation by trapping volatilized aroma, immediately after fermentation and after accelerated aging. Volatiles lost by evaporation during fermentation are mostly fermentative compounds and not grape-related odorants. Isobutanal and some esters are mostly lost during fermentation. In many cases the impact of yeast strain is evident only after aging. Strains could be classified into 3 major clusters with marked differences in fermentative and varietal profiles. Linalool and geraniol were found to have fermentative origin. S. cerevisiae yeast strains can effectively modulate varietal aroma, likely through specific enzymatic activities acting on grape phenolic acids and norisoprenoid aroma precursors and may be specifically used to mitigate some aging-related off odours, such as massoia lactone, guaiacol or TDN.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa