Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(8): 3243-3262, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363235

RESUMO

Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.


Assuntos
Iodo , Estruturas Metalorgânicas , Adsorção , Humanos , Íons , Estruturas Metalorgânicas/química
2.
Pure Appl Chem ; 91(6): 1029-1063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32831407

RESUMO

Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.

3.
Phys Chem Chem Phys ; 20(13): 8962-8967, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29557429

RESUMO

We report the unambiguous detection of phenyl groups covalently attached to functionalised graphene using non-linear spectroscopy. Sum-frequency generation was employed to probe graphene on a gold surface after chemical functionalisation using a benzene diazonium salt. We observe a distinct resonance at 3064 cm-1 which can clearly be assigned to an aromatic C-H stretch by comparison with a self-assembled monolayer on a gold substrate formed from benzenethiol. Not only does sum-frequency generation spectroscopy allow one to characterise functionalised graphene with higher sensitivity and much better specificity than many other spectroscopic techniques, but it also opens up the possibility to assess the coverage of graphene with functional groups, and to determine their orientation relative to the graphene surface.

4.
J Am Chem Soc ; 139(45): 16289-16296, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29020767

RESUMO

During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal-organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g-1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host-I2 and I2-I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H-O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm-3 in MFM-300(Sc).

5.
Phys Chem Chem Phys ; 19(43): 29660-29668, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29085932

RESUMO

Structural information of nanostructures plays a key role in synthesis of novel nano-sized materials for promising applications such as high-performance nanoelectronics and nanophotonics. In this study, we apply for the first time the state-of-the-art coherent diffractive imaging method to characterize the structure of graphite nanoparticles. A sample with nanographites on a Si3N4 support was exposed to 30 nm radiation from a tabletop laser-driven high-order harmonic generation extreme ultraviolet (EUV) source. From the measured far-field diffraction pattern, we were able to reconstruct the distribution of the graphite nanoparticles with a spatial resolution of ∼330 nm using the standard iterative phase retrieval algorithms. A closer look at the reconstructed images reveals possible absorption effects of graphite nanoparticles. This experiment demonstrates the first step towards wide-field and high-resolution imaging of nuclear materials using the newly established lab-scale EUV source. Having such a source opens the door to performing investigations of nuclear graphite and other radioactive material in the lab, thus avoiding the need to transport samples to external facilities.

6.
J Org Chem ; 80(17): 8684-93, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26237435

RESUMO

A new, regioselective synthesis of V-shaped 2,9-bis(6-(4-halophenyl)-1,2,4-triazin-3-yl)-1,10-phenanthrolines (4XPhBTPhen) ligands was developed, creating access to a simple and reliable synthesis of precursors for future supramolecular actinide complexing systems. Described is a reactant-directed regioselective synthetic method, which was found to be high yielding and reliable and yields exclusively 6,6'-phenyl BTPhen derivatives (including 4-chloro and 4-bromo) in five simple steps. Molecular and crystal structures of PhBTP and PhBTPhen products are fully determined and both were found to be in space group C2/c. Additionally, molecular and crystal structures of Z and E isomers of 2-hydrazono-2-phenylacetaldehyde oxime, a reagent in the synthetic route, reveal existence of strong intramolecular N-H···O hydrogen bonding in the Z isomer explaining its lower solubility in water.

7.
Inorg Chem ; 54(1): 174-82, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25485552

RESUMO

Dicesium uranyl tetrachloride (Cs2UO2Cl4) has been a model compound for experimental and theoretical studies of electronic structure of U(VI) in the form of UO2(2+) (uranyl ion) for decades. We have obtained angle-resolved electronic structure information for oriented Cs2UO2Cl4 crystal, specifically relative energies of 5f and 6d valence orbitals probed with extraordinary energy resolution by polarization dependent high energy resolution X-ray absorption near edge structure (PD-HR-XANES) and compare these with predictions from quantum chemical Amsterdam density functional theory (ADF) and ab initio real space multiple-scattering Green's function based FEFF codes. The obtained results have fundamental value but also demonstrate an experimental approach, which offers great potential to benchmark and drive improvement in theoretical calculations of electronic structures of actinide elements.

8.
Anal Bioanal Chem ; 407(22): 6619-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084548

RESUMO

After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR µ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale. This sensitive technique with high spatial resolution is the only method available that can be successfully applied, given the small amount of uranium in bone tissue. Uranium was found preferentially located in calcifying zones in exposed rats and rapidly accumulates in the endosteal and periosteal area of femoral metaphyses, in calcifying cartilage and in recently formed bone tissue along trabecular bone. Furthermore, specific localized areas with high accumulation of uranium were observed in regions identified as micro-vessels and on bone trabeculae. These observations are of high importance in the study of the accumulation of uranium in bone tissue, as the generally proposed passive chemical sorption on the surface of the inorganic part (apatite) of bone tissue cannot account for these results. Our study opens original perspectives in the field of exogenous metal bio-mineralization.


Assuntos
Fêmur/metabolismo , Exposição à Radiação/análise , Espectrometria por Raios X/métodos , Urânio/farmacocinética , Absorção de Radiação/fisiologia , Animais , Fêmur/química , Fêmur/citologia , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Urânio/análise
9.
Inorg Chem ; 53(17): 8949-58, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-24967733

RESUMO

The coordination structure in the solid state and solution complexation behavior of 6-(tetrazol-5-yl)-2,2'-bipyridine (HN4bipy) with samarium(III) was investigated as a model system for actinide(III)/lanthanide(III) separations. Two different solid 1:2 complexes, [Sm(N4bipy)2(OH)(H2O)2] (1) and [Sm(N4bipy)2(HCOO)(H2O)2] (2), were obtained from the reaction of samarium(III) nitrate with HN4bipy in isopropyl alcohol, resuspension in N,N-dimethylformamide (DMF), and slow crystallization. The formate anion coordinated to samarium in 2 is formed by decomposition of DMF to formic acid and dimethylamine. Time-resolved laser fluorescence spectroscopy (TRLFS) studies were performed with curium(III) and europium(III) by using HN4bipy as the ligand. Curium(III) is observed to form 1:2 and 1:3 complexes with increasing HN4bipy concentration; for europium(III), formation of 1:1 and 1:3 complexes is observed. Although the solid-state samarium complexes were confirmed as 1:2 species the 1:2 europium(III) solution complex in ethanol was not identified with TRLFS. The determined conditional stability constant for the 1:3 fully coordinated curium(III) complex species is more than 2 orders of magnitude higher than that for europium(III) (log ß3[Cm(N4bipy)3] = 13.8 and log ß3[Eu(N4bipy)3] = 11.1). The presence of added 2-bromodecanoic acid as a lipophilic anion source reduces the stability constant for formation of the 1:2 and 1:3 curium(III) complexes, but no ternary complexes were observed. The stability constants for the 1:3 metal ion-N4bipy complexes equate to a theoretical separation factor, SF(Cm(III)/Eu(III)) ≈ 500. However, the low solubility of the HN4bipy ligand in nonpolar solvents typically used in actinide-lanthanide liquid-liquid extractions prevents its use as a partitioning extractant until a more lipophilic HN4bipy-type ligand is developed.

10.
Inorg Chem ; 52(18): 10318-24, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23981073

RESUMO

Ionic radii of actinide(III) cations (from U(III) to Cf(III)) in aqueous solution have been derived for the first time starting from accurate experimental determination of the ion-water distances obtained by combining extended X-ray absorption fine structure (EXAFS) results and molecular dynamics (MD) structural data. A strong analogy has been found between the lanthanide and actinide series concerning hydration properties. The existence of a contraction of the An-O distance along the series has been highlighted, while no decrease of the hydration number is evident up to Cf(III).

11.
Inorg Chem ; 51(14): 7940-4, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22765506

RESUMO

We present an X-ray absorption near-edge structure (XANES) study of a series of uranium coordination complexes that possess nearly identical first coordination spheres and geometries in a range of oxidation states from U(III) to U(VI). These compounds were obtained through the activation of small molecules, such as ketones, azides, and carbon dioxide, and upon oxidation of a high-valent U(V)≡O to [U(VI)≡O](+). Most of the compounds have been reported previously. All of them are fully characterized and their oxidation states have been confirmed by various spectroscopic methods (SQUID, (1)H NMR, and UV/vis/near-IR). Each uranium complex consists of a triazacyclononane anchor bearing three aryloxide side arms with bulky tert-butyl (t-Bu) or adamantyl (Ad) ortho substituents. All complexes have approximate C(3) symmetry and possess an axial cavity that is either empty (U(III)) or occupied by a seventh ligand, namely, terminal oxygen (U(V) and U(VI)) or an oxygen-containing ligand (U(IV)). The only exception is [(((t-Bu)ArO)(3)tacnU(VI)(O)][SbF(6)], which is the rare case of a complex that shows a strong inverse trans influence. The determined correlation between the uranium oxidation state and the U L(III)-edge XANES absorption in this series includes a single terminal oxo ligand bonded uranium(V,VI), for which data are essentially nonexistent. The correct assignment of the uranium valence in a U(IV)-L(•-) compound (L(•-) = ketyl radical) is shown to be only possible by a comparison to structurally similar compounds.

12.
Inorg Chem ; 51(9): 5199-207, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22515352

RESUMO

The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log ß(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.

13.
Inorg Chem ; 49(20): 9627-35, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20849125

RESUMO

With the aim of better understanding the selectivity of the established system 2,6-ditriazinylpyridine (BTP) for actinide(III)/lanthanide(III) separations, a related model system was synthesized and studied. The N donor complexing ligand 6-(3,5-dimethyl-1H-pyrazol-1-yl)-2,2'-bipyridine (dmpbipy) was synthesized having a fused N heterocycle ring structure modified from the BTP partitioning ligand, and its extraction performance and selectivity for trivalent actinide cations over lanthanides was evaluated. X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS) results show that 1:1 complexes are formed, unlike the 1:3 complex for BTP systems. The equilibrium constant for curium complex formation with dmpbipy was determined to be log K = 2.80, similar to that for nitrate. The Gibbs free energy, ΔG(20 °C), of 1:1 Cm-dmpbipy formation in n-octan-1-ol was measured to be -15.5 kJ/mol. The dmpbipy ligand in 1-octanol does not extract Am(III) Eu(III) from HNO(3) but was found to extract Am(III) with limited selectivity over Eu(III) (SF(Am(III)/Eu(III)) ≈ 8) dissolved in 2-bromohexanoic acid and kerosene at pH > 2.4.

14.
Chem Rev ; 113(2): 995-1015, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23320457
15.
Environ Sci Technol ; 44(23): 8924-9, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21047117

RESUMO

Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.


Assuntos
Fenômenos Químicos , Fenômenos Ecológicos e Ambientais , Sedimentos Geológicos/química , Netúnio/metabolismo , Poluentes Radioativos/metabolismo , Biodegradação Ambiental , Biotransformação , Sedimentos Geológicos/microbiologia , Fenômenos Microbiológicos , Netúnio/química , Oxirredução , Poluentes Radioativos/química , Espectroscopia por Absorção de Raios X
16.
Environ Sci Pollut Res Int ; 26(6): 5282-5293, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29667060

RESUMO

Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites. This finding corroborates those recently obtained by AsFlFFF and EXAFS spectroscopy on the same sample (Finck et al. 2018). DFT calculations indicate that Lu incorporation within goethite or hematite are almost equally likely, suggesting that experimental parameters such as temperature and reaction time which affect reaction kinetics, play important roles in determining the Lu uptake. It seems likely that these results may be transferable to predict the behavior of chemically homologous trivalent actinides.


Assuntos
Compostos Férricos/química , Lutécio/química , Adsorção , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Cinética , Microscopia Eletrônica de Transmissão e Varredura , Minerais/química , Espectrometria por Raios X , Temperatura , Fatores de Tempo
17.
Sci Rep ; 8(1): 16693, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420602

RESUMO

Coherent diffraction imaging (CDI) or lensless X-ray microscopy has become of great interest for high spatial resolution imaging of, e.g., nanostructures and biological specimens. There is no optics required in between an object and a detector, because the object can be fully recovered from its far-field diffraction pattern with an iterative phase retrieval algorithm. Hence, in principle, a sub-wavelength spatial resolution could be achieved in a high-numerical aperture configuration. With the advances of ultrafast laser technology, high photon flux tabletop Extreme Ultraviolet (EUV) sources based on the high-order harmonic generation (HHG) have become available to small-scale laboratories. In this study, we report on a newly established high photon flux and highly monochromatic 30 nm HHG beamline. Furthermore, we applied ptychography, a scanning CDI version, to probe a nearly periodic nanopattern with the tabletop EUV source. A wide-field view of about 15 × 15 µm was probed with a 2.5 µm-diameter illumination beam at 30 nm. From a set of hundreds of far-field diffraction patterns recorded for different adjacent positions of the object, both the object and the illumination beams were successfully reconstructed with the extended ptychographical iterative engine. By investigating the phase retrieval transfer function, a diffraction-limited resolution of reconstruction of about 32 nm is obtained.

18.
Chem Commun (Camb) ; 53(36): 5001-5004, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28426063

RESUMO

The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

19.
Dalton Trans ; 45(2): 453-7, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26465740

RESUMO

More than a century after its discovery the structure of the Pa(4+) ion in acidic aqueous solution has been investigated for the first time experimentally and by quantum chemistry. The combined results of EXAFS data and quantum chemically optimized structures suggest that the Pa(4+) aqua ion has an average of nine water molecules in its first hydration sphere at a mean Pa-O distance of 2.43 Å. The data available for the early tetravalent actinide (An) elements from Th(4+) to Bk(4+) show that the An-O bonds have a pronounced electrostatic character, with bond distances following the same monotonic decreasing trend as the An(4+) ionic radii, with a decrease of the hydration number from nine to eight for the heaviest ions Cm(4+) and Bk(4+). Being the first open-shell tetravalent actinide, Pa(4+) features a coordination chemistry very similar to its successors. The electronic configuration of all open-shell systems corresponds to occupation of the valence 5f orbitals, without contribution from the 6d orbitals. Our results thus demonstrate that Pa(iv) resembles its early actinide neighbors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa