Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Environ Toxicol ; 39(4): 2208-2217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124272

RESUMO

Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cobre , Camundongos , Animais , Cobre/toxicidade , Cobre/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
2.
Microb Pathog ; 181: 106215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380063

RESUMO

Type II secretion systems (T2SS) are important molecular machines used by bacteria to transport a wide range of proteins across the outer membrane from the periplasm. Vibrio mimicus is an epidemic pathogen threats to both aquatic animals and human health. Our previous study demonstrates that T2SS deletion reduced virulence by 307.26 times in yellow catfish. However, the specific effects of T2SS-mediated extracellular protein secretion in V. mimicus, including its potential role in exotoxin secretion or other mechanisms, require further investigation. Through proteomics and phenotypic analyses, this study observed that the ΔT2SS strain exhibited significant self-aggregation and dynamic deficiency, with a notable negative correlation with subsequent biofilm formation. The proteomics analysis revealed 239 different abundances of extracellular proteins after T2SS deletion, including 19 proteins with higher abundance and 220 proteins with lower and even absent in the ΔT2SS strain. These extracellular proteins are involved in various pathways, such as metabolism, virulence factors expression, and enzymes. Among them, purine, pyruvate, and pyrimidine metabolism, and the Citrate cycle, were the primary pathways affected by T2SS. Our phenotypic analysis is consistent with these findings, suggesting that the decreased virulence of ΔT2SS strains is due to the effect of T2SS on these proteins, which negatively impacts growth, biofilm formation, auto-aggregation, and motility of V. mimicus. These results provide valuable insights for designing deletion targets for attenuated vaccines development against V. mimicus and expand our understanding of the biological functions of T2SS.


Assuntos
Sistemas de Secreção Tipo II , Animais , Humanos , Sistemas de Secreção Tipo II/genética , Sistemas de Secreção Tipo II/metabolismo , Vacinas Atenuadas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Ecotoxicol Environ Saf ; 268: 115679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976929

RESUMO

Nickel (Ni) is the most important environmental pollution in the world. Ni has been confirmed to have multi-organ toxicology and carcinogenicity. Recently, Ni also can impair the male reproductive system, however, its precious mechanism still has not been clarified. The current work found that nickel chloride (NiCl2) induced histopathological lesions in testis. And, the Johnsen's score, seminiferous tubule diameter, and spermatogenic epithelium thickness were decreased in NiCl2-treated mice. The number of spermatogonium, primary spermatocyte, and round spermatid also were significantly reduced after Ni treatment. Next the potential molecular mechanism was measured. NiCl2 treatment elevated ROS production in the testis. Additionally, NiCl2 was found to induce apoptosis with features including up-regulation of Bax, cleaved-caspase-3, cleaved-caspase-8, caspase-9, and caspase-12, while down-regulation of Bcl-2 expression. In the meantime, the marker protein of DNA damage γ-H2AX was significantly increased in NiCl2-primed mice testis. To clarify effects of reactive oxygen species (ROS) in apoptosis and DNA damage induced by NiCl2, NiCl2 was used to co-treat antioxidant NAC (N-Acetyl-L-cysteine). NAC weakened ROS production induced by NiCl2, and played an inhibition role in apoptosis and DNA damage. Moreover, co-treatment using NiCl2 and NAC group also eliminated spermatogenesis disorders. In summary, research results reveal the relations of spermatogenesis disorder induced by NiCl2 with apoptosis and DNA damage mediated by ROS and apoptosis in the testis.


Assuntos
Apoptose , Níquel , Camundongos , Masculino , Animais , Espécies Reativas de Oxigênio , Níquel/toxicidade , Testículo , Dano ao DNA
4.
Ecotoxicol Environ Saf ; 259: 115049, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235900

RESUMO

Nickel, as a widely polluted metal, has been shown nephrotoxicity. Ferroptosis is a new type of cell death driven by iron-dependent lipid peroxidation. Our study found that nickel chloride (NiCl2) induced ferroptosis in mouse kidney and TCMK-1 cells. The iron content was significantly increased in the kidney and TCMK-1 cells after NiCl2 treatment. Lipid peroxidation and MDA content were significantly increased, and GSH content and T-SOD activity were significantly decreased after exposure to NiCl2. Moreover, NiCl2 increased COX-2 protein levels, decreased SLC7A11 and GPX4 protein levels, and elevated Ptgs2 mRNA levels. Next, the mechanism of Ni-induced ferroptosis was investigated. The results showed that NiCl2 induced autophagy in TCMK-1 cells, which promoted ferroptosis induced by NiCl2. Furthermore, the data of autophagy activation or inhibition experiment showed that autophagy facilitated ferroptosis through the degradation of the iron regulation protein NCOA4 and FTH1. Otherwise, iron chelator DFOM treatment inhibited ferroptosis induced by NiCl2. Finally, ferroptosis inhibitor Fer-1 treatment significantly alleviated cytotoxicity induced by NiCl2. To sum up, our above results showed that ferroptosis is involved in NiCl2-induced nephrotoxicity, and NiCl2 induces autophagy-dependent ferritin degradation, releases iron ions, leads to iron overload, and induces ferroptosis. This study supplies a new theoretical foundation for the study of nickel and renal toxicity.


Assuntos
Ferroptose , Animais , Camundongos , Níquel/toxicidade , Níquel/metabolismo , Ferro/metabolismo , Ferritinas , Autofagia/genética
5.
Environ Toxicol ; 38(5): 1185-1195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36794572

RESUMO

Nickel (Ni) is an important and widely hazardous chemical industrial waste. Excessive Ni exposure could cause multi-organs toxicity in human and animals. Liver is the major target organ of Ni accumulation and toxicity, however, the precise mechanism is still unclear. In this study, nickel chloride (NiCl2 )-treatment induced hepatic histopathological changes in the mice, and, transmission electron microscopy results showed mitochondrial swollen and deformed of hepatocyte. Next, the mitochondrial damages including mitochondrial biogenesis, mitochondrial dynamics, and mitophagy were measured after NiCl2 administration. The results showed that NiCl2 suppressed mitochondrial biogenesis by decreasing PGC-1α, TFAM, and NRF1 protein and mRNA expression levels. Meanwhile, the proteins involved in mitochondrial fusion were reduced by NiCl2 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. The up-regulation of mitochondrial p62 and LC3II expression indicated that NiCl2 increased mitophagy in the liver. Moreover, the receptor-mediated mitophagy and ubiquitin (Ub)-dependent mitophagy were detected. NiCl2 promoted PINK1 accumulation and Parkin recruitment on mitochondria. And, the receptor proteins of mitophagy Bnip3 and FUNDC1 were increased in the NiCl2 -treated mice liver. Overall, these results show that NiCl2 could induce mitochondria damage in the liver of mice, and, dysfunction of mitochondrial biogenesis, mitochondrial dynamics and mitophagy involved in the molecular mechanism of NiCl2 -induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Mitofagia , Humanos , Camundongos , Animais , Mitofagia/genética , Dinâmica Mitocondrial/genética , Biogênese de Organelas , Níquel/toxicidade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
6.
Molecules ; 28(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36903624

RESUMO

Macrophages are crucial components of the immune system and play a critical role in the initial defense against pathogens. They are highly heterogeneous and plastic and can be polarized into classically activated macrophages (M1) or selectively activated macrophages (M2) in response to local microenvironments. Macrophage polarization involves the regulation of multiple signaling pathways and transcription factors. Here, we focused on the origin of macrophages, the phenotype and polarization of macrophages, as well as the signaling pathways associated with macrophage polarization. We also highlighted the role of macrophage polarization in lung diseases. We intend to enhance the understanding of the functions and immunomodulatory features of macrophages. Based on our review, we believe that targeting macrophage phenotypes is a viable and promising strategy for treating lung diseases.


Assuntos
Pneumopatias , Macrófagos , Humanos , Macrófagos/metabolismo , Fenótipo , Transdução de Sinais , Pneumopatias/metabolismo , Ativação de Macrófagos
7.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 541-555, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35586975

RESUMO

This study was conducted to investigate the relationship between changes in intestinal aquaporins (AQPs) in piglets fed diets with different protein levels and nutritional diarrhoea in piglets. Briefly, 96 weaned piglets were randomly divided into four groups fed diets with crude protein (CP) levels of 18%, 20%, 22% and 24%. The small intestines and colons of the weaned piglets were collected, and several experiments were conducted. In the small intestine, AQP4 protein expression was higher in weaned piglets fed the higher-CP diets (22% and 24% CP) than in those fed the 20% CP diet except at 72 h (p < 0.01). At 72 h, the AQP4 protein expression in the small intestine was lower in the 18% group than in the other three groups (p < 0.01). Under 20% CP feeding, AQP2, AQP4 and AQP9 protein expression in the colons of piglets peaked at certain time points. The AQP2 and AQP4 mRNA levels in the colon and the AQP4 and AQP4 mRNA levels in the distal colon were approximately consistent with the protein expression levels. However, the AQP9 mRNA content in the colon was highest in the 18% group, and the AQP2 mRNA content in the distal colon was significantly higher in the 24% group than in the 20% group. AQP2 and AQP4 were expressed mainly around columnar cells in the upper part of the smooth colonic intestinal villi, and AQP9 was expressed mainly on columnar cells and goblet cells in the colonic mucosa. In conclusion, 20% CP is beneficial to the normal expression of AQP4 in the small intestine, AQP2, AQP4 and AQP9 in the colon of weaned piglets, which in turn maintains the balance of intestinal water absorption and secretion in piglets.


Assuntos
Aquaporina 2 , Aquaporina 4 , Animais , Suínos , Aquaporina 4/farmacologia , Intestinos , Dieta , Desmame , Mucosa Intestinal/metabolismo , Proteínas Alimentares/metabolismo , RNA Mensageiro
8.
Microb Pathog ; 167: 105572, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561978

RESUMO

The protective effect of cinnamaldehyde on channel catfish infected by drug-resistant Aeromonas hydrophila CW strain was explored by observing the clinical signs and histopathology, measuring the cumulative mortality, serum biochemical and non-specific immune indicators, and intestinal microbiota in this study. The cumulative survival rate of the cinnamaldehyde within 14 days was significantly higher than that of the challenge group, which was 70% and 20%, respectively. Compared with the challenge group, the activities of lysozyme, superoxide dismutase, and glutathione peroxidase in the treatment group were increased, while there was no significant difference in catalase activity. Compared with the challenge group, the histopathology results showed that the injury of liver, spleen, and kidney was significantly alleviated after cinnamaldehyde treatment. The results of intestinal microbiota showed that the proportion of Proteobacteria in the challenge group was significantly increased, and the proportion of Aeromonas sp. reached 30% based on the analysis of species classification level. The composition of dominant species in the treatment group was similar to the control group. In conclusion, cinnamaldehyde increased the cumulative survival rate of channel catfish infected by A. hydrophila. It could protect channel catfish through improving the non-specific immune function of channel catfish, alleviating the pathological lesions of liver, spleen, kidney, and intestine, and maintaining the relative balance of the intestinal microbiota. Therefore, cinnamaldehyde could be a candidate drug for the treatment of A. hydrophila infection.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ictaluridae , Acroleína/análogos & derivados , Aeromonas hydrophila , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária
9.
Fish Shellfish Immunol ; 123: 489-495, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35364259

RESUMO

Autophagy and apoptosis play important roles in the occurrence and development of diseases. Largemouth bass virus (LMBV) is a primary agent that causes infectious skin ulcerative syndrome in largemouth bass and threatens the aquaculture of the species. We investigated the relationship between LMBV and autophagy, as well as the effect of autophagy on apoptosis induced by LMBV. Results showed that LMBV could induce autophagy in epithelioma papulosum cyprinid (EPC) cells. There was also an increase in LC3-II protein and decrease in p62 protein, along with autophagosome-like membranous vesicles and punctate autophagosomes fluorescent spots being observed in EPC cells. Enhancing autophagy inhibited the replication of LMBV and apoptosis in EPC cells while inhibiting autophagy produced the opposite effect. These results offer new insights into the pathogenesis of LMBV and anti-LMBV strategies.


Assuntos
Bass , Carcinoma , Cyprinidae , Infecções por Vírus de DNA , Doenças dos Peixes , Animais , Apoptose , Autofagia , Vírus de DNA , Replicação Viral
10.
BMC Vet Res ; 18(1): 228, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715782

RESUMO

Pseudorabies virus (PRV), also known as suid Alphaherpesvirus 1 (SuHV-1), which is one of the most devastating infectious pathogen of swine industry worldwide. Vaccination is the safest and most effective PRV prevention and control strategy. B cell receptor (BCR) is membrane-bound immunoglobulin located on the surface of B cells capable of specifically binding foreign antigens, which is one of the most important molecules regulating the proliferation and function of B cells. Here, to assess the molecular diversity of BCR H-CDR3 repertoire after different PRV strains infection, we detected the IGHV, IGHD, IGHJ genes usage and CDR3 sequence changes of mice spleen with PRV vaccine strain (Bartha-K61), variant strain (XJ) and mock infection by high-throughput sequencing. We found that PRV-infected groups shared partial BCR sequences, which are most likely to be PRV-specific BCR candidates. However, there were still differences in the IGHV genes usage as well as the combined usage of IGHV and IGHJ genes between the Bartha-K61 strain and XJ strain infection groups. In addition, the CDR3 sequences exhibited large differences in the types and lengths in PRV infection groups. Our study contributes to a better understanding of the host adaptive immune response to PRV infection and provides a theoretical basis for further research on novel and efficient PRV vaccines in the future.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Roedores , Doenças dos Suínos , Animais , Herpesvirus Suídeo 1/genética , Camundongos , Vacinas contra Pseudorraiva , Receptores de Antígenos de Linfócitos B/genética , Baço , Suínos
11.
BMC Vet Res ; 18(1): 16, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983523

RESUMO

BACKGROUND: Porcine deltacoronavirus (PDCoV) is a new pathogenic porcine intestinal coronavirus, which has appeared in many countries since 2012. PDCoV disease caused acute diarrhea, vomiting, dehydration and death in piglets, resulted in significant economic loss to the pig industry. However, there is no commercially available vaccine for PDCoV. In this study, we constructed recombinant pseudorabies virus (rPRVXJ-delgE/gI/TK-S) expressing PDCoV spike (S) protein and evaluated its safety and immunogenicity in mice. RESULTS: The recombinant strain rPRVXJ-delgE/gI/TK-S obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster syrian kidney-21 (BHK-21) cells and is safe to mice. After immunizing mice with rPRVXJ-delgE/gI/TK-S, the expression levels of IFN-γ and IL-4 in peripheral blood of mice were up-regulated, the proliferation of spleen-specific T lymphocytes and the percentage of CD4+ and CD8+ lymphocytes in mice spleen was increased. rPRVXJ-delgE/gI/TK-S showed good immunogenicity for mice. On the seventh day after booster immunity, PRV gB and PDCoV S specific antibodies were detected in mice, and the antibody level continued to increase, and the neutralizing antibody level reached the maximum at 28 days post- immunization (dpi). The recombinant strain can protect mice with 100% from the challenge of virulent strain (PRV XJ) and accelerate the detoxification of PDCoV in mice. CONCLUSION: The recombinant rPRVXJ-delgE/gI/TK-S strain is safe and effective with strong immunogenicity and is expected to be a candidate vaccine against PDCoV and PRV.


Assuntos
Infecções por Coronavirus , Herpesvirus Suídeo 1 , Glicoproteína da Espícula de Coronavírus/imunologia , Doenças dos Suínos , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Deltacoronavirus , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/imunologia , Camundongos , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
12.
Dis Aquat Organ ; 150: 31-36, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796509

RESUMO

Epitheliocystis is an emerging and global aquaculture disease caused by a diverse range of bacteria of the order Chlamydiales. Here we report a case of epitheliocystis caused by a novel Chlamydia bacterium, which resulted in 40% mortality in cultured cyprinids (Spinibarbus denticulatus). The affected fish exhibited lethargy, were observed swimming near the oxygen pump and subsequently died. Histopathology analysis revealed that lesions were concentrated mainly on the gills. The epithelial cells of the damaged gill lamellae showed hyperplasia, fusion and adhesion, and were characterized by inflammation and necrosis. Inclusion bodies were observed in some proliferating epithelial cells at the tips of the gill lamellae and were accompanied by different degrees of mucous cell proliferation. Transmission electron microscopy examination clearly showed the morphological characteristics of chlamydia-like bacteria in epithelial cells. In addition, 16S rRNA sequencing (752 bp) and molecular phylogenetic analyses revealed that epitheliocystis agents detected in S. denticulatus belonged to a novel family, Chlamydiaceae. This is the first report of epitheliocystis in cultured fish in China, and the findings in this study increase the range of hosts affected by epitheliocystis.


Assuntos
Infecções Bacterianas , Chlamydia , Cyprinidae , Doenças dos Peixes , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Chlamydia/genética , Doenças dos Peixes/microbiologia , Filogenia , RNA Ribossômico 16S/genética
13.
J Environ Manage ; 317: 115481, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751278

RESUMO

The study aimed to perform a regional investigation of the antibiotic resistance characteristics (ARCHs) of zoonotic pathogens in environments of high antibiotic pressure to observe the future trend of antibiotic application. In this study, an ARCH analysis of the animal pathogens was conducted in the Sichuan Basin with an area of about 180,000 km2 and an estimated high antibiotic application exceeding 2000 tons. A total of 388 bacterial strains from nine species were isolated during 2013-2021. The results showed a dynamic change in the pathogen resistance in the Sichuan Basin with no apparent temporal trend. Fifty-two of 54 antibiotic resistance phenotypes (ARPs) and 180/218 antibiotic resistance genes (ARGs) were detected in this region. The antibiotic resistance in the classification of ß-lactam, sulfanilamide, and tetracycline had a relatively high detective rate, with 33-58% of ARPs and about 29.7% of ARGs. The isolates from terrestrial animals generally had higher ARPs and ARGs than aquatic animals. Most pathogens carried 5-11 ARPs, and each isolate carried 19.7 ARGs on average. Our result showed that there was a complicated accumulation of ARGs under high antibiotic pressure. Besides, the unique strain in the Sichuan Basin did not show higher resistance rates compared with the World Health Organization data, possibly due to fitness cost. However, the complex ARCH under high pressure still deserves attention to prevent the emergence of super-resistant bacteria.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Tetraciclina
14.
Molecules ; 27(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889447

RESUMO

Interferons (IFNs) play a major role in the host's antiviral innate immunity. In response to viral infection, IFNs bind their receptors and initiate a signaling cascade, leading to the accurate transcriptional regulation of hundreds of IFN-stimulated genes (ISGs). Porcine rotavirus (PoRV) belongs to genus Rotavirus of the Reoviridae family; the infection is a global epidemic disease and a major threat to the pig industry. In this study, we found that IFN-λ3 inhibited the replication of PoRV in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent. Furthermore, the antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in MA104 cells. Further research showed that IFN-λ3 and IFN-α might inhibit PoRV infection by activating ISGs, i.e., MxA, OASL and ISG15, in IPEC-J2 cells. However, the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral activity. Our data demonstrated that IFN-λ3 had antiviral activity against PoRV and may serve as a useful antiviral candidate against PoRV, as well as other viruses in swine.


Assuntos
Rotavirus , Animais , Antivirais/farmacologia , Linhagem Celular , Interferon-alfa/farmacologia , Interferons/farmacologia , Suínos
15.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1277-1287, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34719816

RESUMO

In order to pursue faster growth and development of weaned piglets, increased dietary protein (CP) levels were favoured by the pig industry and the feed industry. The digestive organs of piglets were not fully developed at weaning, and the digestive absorption capacity of protein was limited. High-protein diets can cause allergic reactions in piglets, destroy intestinal structural integrity, reduce immunity, and cause intestinal flora imbalance. Undigested proteins were prone to produce toxic substances, such as ammonia and biogenic amines, after fermentation in the hindgut, which negatively affects the health of the intestine and eventually causes reduced growth performance and diarrhoea in piglets. This review revealed the mechanism of diarrhoea caused by high-protein diets in weaned piglets and provided ideas for preventing diarrhoea in weaned piglets.


Assuntos
Ração Animal , Dieta Rica em Proteínas , Suínos , Animais , Desmame , Ração Animal/análise , Dieta , Diarreia/veterinária , Dieta Rica em Proteínas/veterinária , Suplementos Nutricionais
16.
Toxicol Appl Pharmacol ; 418: 115500, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33744278

RESUMO

Copper (Cu) is considered as an essential trace element for living organisms. However, over-exposure to Cu can lead to adverse health effects on human and animals. There are limited researches on pulmonary toxicity induced by Cu. Here, we found that copper sulfate (CuSO4)-treatment could induce pulmonary fibrosis with Masson staining and up-regulated protein and mRNA expression of Collagen I and α-Smooth Muscle Actin (α-SMA) in mice. Next, the mechanism underlying Cu-induced pulmonary fibrosis was explored, including transforming growth factor-ß1 (TGF-ß1)-mediated Smad pathway, mitogen-activated protein kinases (MAPKs) pathway and epithelial-mesenchymal transition (EMT). CuSO4 triggered pulmonary fibrosis by activation of the TGF-ß1/Smad pathway, which was accomplished by increasing TGF-ß1, p-Smad2 and p-Smad3 protein and mRNA expression levels. Also, up-regulated protein and mRNA expression of p-JNK, p-ERK, and p-p38 demonstrated that CuSO4 activated MAPKs pathways. Concurrently, EMT was activated by increasing vimentin and N-cadherin while decreasing E-cadherin protein and mRNA expression levels. Altogether, the abovementioned findings indicate that CuSO4 treatment may induce pulmonary fibrosis through the activation of EMT induced by TGF-ß1/Smad pathway and MAPKs pathways, revealing the mechanism Cu-caused pulmonary toxicity.


Assuntos
Sulfato de Cobre , Transição Epitelial-Mesenquimal , Pulmão/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Pulmão/patologia , Masculino , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética
17.
Arch Virol ; 166(6): 1769-1773, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33761009

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating viral diseases in the global pig industry. Recently, we isolated and plaque-purified porcine reproductive and respiratory syndrome virus (PRRSV) strain SC2020-1 from "aborted piglets" on a farm in Sichuan, China. To investigate the molecular biological characteristics of this strain, it was subjected to genome sequencing and analysis. The full-length genome sequence of strain SC2020-1 was 87.7% identical to that of the Lelystad strain (PRRSV type I protoype strain) and 82.2-84.8% identical to PRRSV type I isolates from China. NSP2, ORF3, and ORF4 were the most variable regions and contained discontinuous deletions or insertions when compared to other PRRSV type I strains. Phylogenetic analysis of the complete genome sequence showed that SC2020-1 clustered with PRRSV type I but outside of the three previously described branches (Lelystad virus-like, Amervac PRRS-like, and BJEU06-1-like). The Nsp2 gene was in the same branch with EUGDHD strains from China. This is the first report of PRRSV type I infection associated with abortion in sows in southwest China. Close attention should be paid to the prevention and control of this evolving virus.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Animais , China/epidemiologia , Surtos de Doenças/veterinária , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Suínos
18.
BMC Vet Res ; 17(1): 355, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798885

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. RESULTS: The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen's kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. CONCLUSIONS: In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.


Assuntos
Ensaio de Imunoadsorção Enzimática/veterinária , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vacinas de Produtos Inativados/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes , Ensaio de Imunoadsorção Enzimática/métodos , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Sensibilidade e Especificidade , Suínos
19.
Ecotoxicol Environ Saf ; 208: 111656, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396170

RESUMO

Although copper is among the indispensable trace elements in animal physiological processes, it exerts toxicity upon over-exposure. The present study aimed to investigate hepatocyte autophagy induced by CuSO4 and its potential mechanism. A total of 240 ICR mice (four-week-old, 120 males and 120 females) were randomly divided into four groups, in which mice separately received 0, 4, 8, and 16 mg/kg of Cu (Cu2+-CuSO4) for 42 d. The results of increased autophagosomes and autophagy marker LC3B brown cell staining showed that excessive intake of Cu enhanced hepatocyte autophagy. Simultaneously, Cu inhibited the activity of mTOR through suppressing mRNA and protein expressions in mTOR, which in turn up-regulated expression levels of ULK1 and initiated autophagy. Also, over-exposure to Cu increased mRNA and protein expressions of Beclin1, Atg12, Atg5, Atg16L1, Atg7, Atg3, and LC3 and decreased mRNA and protein expressions of p62. These results indicate that excess Cu can enhance hepatocyte autophagy via inhibiting the mTOR signaling pathway and regulating mRNA and protein expressions of factors implicated to autophagy in mice.


Assuntos
Autofagia/efeitos dos fármacos , Cobre/toxicidade , Hepatócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Serina-Treonina Quinases TOR/genética
20.
Ecotoxicol Environ Saf ; 222: 112518, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271501

RESUMO

Copper (Cu), as a common chemical contaminant in environment, is known to be toxic at high concentrations. The current research demonstrates the effects of copper upon hepatocyte cell-cycle progression (CCP) in mice. Institute of cancer research (ICR) mice (n = 240) at an age of four weeks were divided randomly into groups treated with different doses of Cu (0, 4, 8, and 16 mg/kg) for 21 and 42 days. Results showed that high Cu exposure caused hepatocellular G0/G1 cell-cycle arrest (CCA) and reduced cell proportion in the G2/M phase. G0/G1 CCA occurred with down-regulation (p < 0.05) of Ras, p-PI3K (Tyr458), p-Akt (Thr308), p-forkhead box O3 (FOXO3A) (Ser253), p-glycogen synthase kinase 3-ß (GSK3-ß) (Ser9), murine double minute 2 (MDM2) protein, and mRNA expression levels, and up-regulation (p < 0.05) of PTEN, p-p53 (Ser15), p27, p21 protein, and mRNA expression levels, which subsequently suppressed (p < 0.05) the protein and mRNA expression levels of CDK2/4 and cyclin E/D. These results indicate that Cu exposure suppresses the Ras/PI3K/Akt signaling pathway to reduce the level of CDK2/4 and cyclin E/D, which are essential for the G1-S transition, and finally causes hepatocytes G0/G1 CCA.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cobre/toxicidade , Pontos de Checagem da Fase G1 do Ciclo Celular , Quinase 3 da Glicogênio Sintase , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa