Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant J ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38796842

RESUMO

Enhancing the efficiency of photosynthesis represents a promising strategy to improve crop yields, with keeping the steady state of PSII being key to determining the photosynthetic performance. However, the mechanisms whereby the stability of PSII is maintained in oxygenic organisms remain to be explored. Here, we report that the Psb28 protein functions in regulating the homeostasis of PSII under different light conditions in Arabidopsis thaliana. The psb28 mutant is much smaller than the wild-type plants under normal growth light, which is due to its significantly reduced PSII activity. Similar defects were seen under low light and became more pronounced under photoinhibitory light. Notably, the amounts of PSII core complexes and core subunits are specifically decreased in psb28, whereas the abundance of other representative components of photosynthetic complexes remains largely unaltered. Although the PSII activity of psb28 was severely reduced when subjected to high light, its recovery from photoinactivation was not affected. By contrast, the degradation of PSII core protein subunits is dramatically accelerated in the presence of lincomycin. These results indicate that psb28 is defective in the photoprotection of PSII, which is consistent with the observation that the overall NPQ is much lower in psb28 compared to the wild type. Moreover, the Psb28 protein is associated with PSII core complexes and interacts mainly with the CP47 subunit of PSII core. Taken together, these findings reveal an important role for Psb28 in the protection and stabilization of PSII core in response to changes in light environments.

2.
Plant Physiol ; 192(1): 274-292, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746783

RESUMO

Drought stress poses a serious threat to global agricultural productivity and food security. Plant resistance to drought is typically accompanied by a growth deficit and yield penalty. Herein, we report a previously uncharacterized, dicotyledon-specific gene, Stress and Growth Interconnector (SGI), that promotes growth during drought in the oil crop rapeseed (Brassica napus) and the model plant Arabidopsis (Arabidopsis thaliana). Overexpression of SGI conferred enhanced biomass and yield under water-deficient conditions, whereas corresponding CRISPR SGI mutants exhibited the opposite effects. These attributes were achieved by mediating reactive oxygen species (ROS) homeostasis while maintaining photosynthetic efficiency to increase plant fitness under water-limiting environments. Further spatial-temporal transcriptome profiling revealed dynamic reprogramming of pathways for photosynthesis and stress responses during drought and the subsequent recovery. Mechanistically, SGI represents an intrinsically disordered region-containing protein that interacts with itself, catalase isoforms, dehydrins, and other drought-responsive positive factors, restraining ROS generation. These multifaceted interactions stabilize catalases in response to drought and facilitate their ROS-scavenging activities. Taken altogether, these findings provide insights into currently underexplored mechanisms to circumvent trade-offs between plant growth and stress tolerance that will inform strategies to breed climate-resilient, higher yielding crops for sustainable agriculture.


Assuntos
Arabidopsis , Secas , Espécies Reativas de Oxigênio/metabolismo , Melhoramento Vegetal , Arabidopsis/metabolismo , Água/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Plant Physiol ; 192(4): 2768-2784, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37096684

RESUMO

In flowering plants, hundreds of RNA editing events occur in the chloroplasts and mitochondria during posttranscriptional processes. Although several pentatricopeptide repeat (PPR) proteins have been shown to form the editosome core, the precise interactions between the different editing factors are still obscure. Here, we isolated an Arabidopsis (Arabidopsis thaliana) PPR protein, designated DELAYED GREENING 409 (DG409), that was dually targeted to chloroplasts and mitochondria. This protein consists of 409 amino acids with 7 PPR motifs but lacks a C-terminal E, E+, or DYW domain. A mild dg409 knockdown mutant displays a sickly phenotype. In this mutant, the young leaves are pale green and turn green at maturity, and the development of chloroplasts and mitochondria is severely disrupted. Complete loss of DG409 function results in defective embryos. Transcriptomic analysis of the dg409 knockdown plants showed some editing defects in genes from both organelles, including CASEINOLYTIC PROTEASE P (clpP)-559, RNA POLYMERASE SUBUNIT ALPHA (rpoA)-200, ACETYL-COA CARBOXYLASE CARBOXYL TRANSFERASE SUBUNIT BETA (accD)-1568, NADH DEHYDROGENASE SUBUNIT 7 (nad7)-1505, and RIBOSOMAL PROTEIN S3 (rps3)-1344. RNA immunoprecipitation showed that DG409 was associated with the targeted transcripts in vivo. Interaction assays revealed that DG409 directly interacted with 2 DYW-type PPR proteins (EARLY CHLOROPLAST BIOGENESIS2 [AtECB2] and DYW DOMAIN PROTEIN2 [DYW2]) and 3 multiple organellar RNA editing factors (MORF2, MORF8, and MORF9). These results indicate that DG409 is involved in RNA editing via protein complexes and is therefore essential for chloroplast and mitochondrial development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
4.
J Exp Bot ; 72(2): 385-397, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33045083

RESUMO

Nitric oxide (NO) is a key signaling molecule regulating several plant developmental and stress responses. Here, we report that NO plays an important role in seed oil content and fatty acid composition. RNAi silencing of Arabidopsis S-nitrosoglutathione reductase 1 (GSNOR1) led to reduced seed oil content. In contrast, nitrate reductase double mutant nia1nia2 had increased seed oil content, compared with wild-type plants. Moreover, the concentrations of palmitic acid (C16:0), linoleic acid (C18:2), and linolenic acid (C18:3) were higher, whereas those of stearic acid (C18:0), oleic acid (C18:1), and arachidonic acid (C20:1) were lower, in seeds of GSNOR1 RNAi lines. Similar results were obtained with rapeseed embryos cultured in vitro with the NO donor sodium nitroprusside (SNP), and the NO inhibitor NG-Nitro-L-arginine Methyl Ester (L-NAME). Compared with non-treated embryos, the oil content decreased in SNP-treated embryos, and increased in L-NAME-treated embryos. Relative concentrations of C16:0, C18:2 and C18:3 were higher, whereas C18:1 concentration decreased in rapeseed embryos treated with SNP. Proteomics and transcriptome analysis revealed that three S-nitrosated proteins and some key genes involved in oil synthesis, were differentially regulated in SNP-treated embryos. Therefore, regulating NO content could be a novel approach to increasing seed oil content in cultivated oil crops.


Assuntos
Ácidos Graxos , Óxido Nítrico , Nitrosação , Óleos de Plantas , Proteína S , Sementes
5.
Photosynth Res ; 137(3): 493-501, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29959749

RESUMO

In plants, green non-foliar organs are able to perform photosynthesis just as leaves do, and the seed-enclosing pod acts as an essential photosynthetic organ in legume and Brassica species. To date, the contribution of pod photosynthesis to seed yield and related components still remains largely unexplored, and in Arabidopsis thaliana, the photosynthetic activity of the silique (pod) is unknown. In this study, an Arabidopsis glk1/glk2 mutant defective in both leaf and silique photosynthesis was used to create tissue-specific functional complementation lines. These lines were used to analyze the contribution of silique wall photosynthesis to seed yield and related traits, and to permit the comparison of this contribution with that of leaf photosynthesis. Our results showed that, together with leaves, the photosynthetic assimilation of the silique wall greatly contributed to total seed yield per plant. As for individual components of yield traits, leaf photosynthesis alone contributed to the seed number per silique and silique length, while silique wall photosynthesis alone contributed to thousand-seed weight. In addition, enhancing the photosynthetic capacity of the silique wall by overexpressing the photosynthesis-related RCA gene in this tissue resulted in significantly increased seed weight and oil content in the wild-type (WT) background. These results reveal that silique wall photosynthesis plays an important role in seed-related traits, and that enhancing silique photosynthesis in WT plants can further improve seed yield-related traits and oil production. This finding may have significant implications for improving the seed yield and oil production of oilseed crops and other species with pod-like organs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fotossíntese , Óleos de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Mutação , Especificidade de Órgãos , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Óleos de Plantas/análise , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 112(37): E5123-32, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324896

RESUMO

Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Proteínas de Plantas/fisiologia , Sementes/fisiologia , Fatores de Transcrição/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Brassica napus/fisiologia , Brassica rapa/fisiologia , Primers do DNA , Deleção de Genes , Ligação Genética , Marcadores Genéticos , Íntrons , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Poliploidia , Locos de Características Quantitativas , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Transcriptoma , Transgenes
7.
Plant Cell Rep ; 33(7): 1091-108, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682522

RESUMO

KEY MESSAGE: Cosuppression of an Arabidopsis Rubisco small subunit gene RBCS3B at Arabidopsis resulted in albino or pale green phenotypes which were caused by ROS accumulation As the most abundant protein on Earth, Rubisco has received much attention in the past decades. Even so, its function is still not understood thoroughly. In this paper, four Arabidopsis transgenic lines (RBCS3B-7, 18, 33, and 35) with albino or pale green phenotypes were obtained by transformation with a construct driving expression of sense RBCS3B, a Rubisco small subunit gene. The phenotypes produced in these transgenic lines were found to be caused by cosuppression. Among these lines, RBCS3B-7 displayed the most severe phenotypes including reduced height, developmental arrest and plant mortality before flowering when grown under normal light on soil. Chloroplast numbers in mesophyll cells were decreased compared to WT, and stacked thylakoids of chloroplasts were broken down gradually in RBCS3B-7 throughout development. In addition, the RBCS3B-7 line was light sensitive, and PSII activity measurement revealed that RBCS3B-7 suffered severe photoinhibition, even under normal light. We found that photoinhibition was due to accumulation of ROS, which accelerated photodamage of PSII and inhibited the repair of PSII in RBCS3B-7.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Luz , Células do Mesofilo/metabolismo , Células do Mesofilo/ultraestrutura , Dados de Sequência Molecular , Fenótipo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/metabolismo , Solo , Tilacoides/metabolismo
8.
BMC Genomics ; 14: 717, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-24138473

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay. RESULTS: A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%. CONCLUSIONS: Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.


Assuntos
Brassica napus/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Genótipo , Técnicas de Genotipagem , Poliploidia , Análise de Sequência de DNA
9.
J Exp Bot ; 63(10): 3727-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22442419

RESUMO

Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.


Assuntos
Brassica napus/metabolismo , Fotossíntese , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/citologia , Regulação para Cima , Sequência de Aminoácidos , Brassica napus/química , Brassica napus/citologia , Brassica napus/genética , Contagem de Células , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sementes/química , Sementes/genética , Sementes/metabolismo , Alinhamento de Sequência
10.
G3 (Bethesda) ; 9(10): 3501-3511, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31484671

RESUMO

Alternative oxidases (AOXs) are the terminal oxidase in the cyanide-resistant respiration pathway in plant mitochondria, which play an important role in abiotic stress and are proposed as a functional marker for high tolerant breeding. In this study, ten AOX genes (BnaAOXs) were identified, and CysI and CysII of AOX isoforms were highly conserved in rapeseed. Among them, Bna.AOX1b was mainly expressed in the ovule and displayed varying expression between rapeseed cultivars which showed different salt resistance in seed germination. We identified its mitochondrial localization of this gene. To investigate the function of BnaAOX1b in rapeseed, transgenic rapeseed lines with overexpressed BnaAOX1b were created and seed germination and seedling establishment assays were performed under osmotic, salt, and ABA treatment. The results indicated that overexpression of BnaAOX1b significantly improved seed germination under osmotic and salt stress and weakened ABA sensitivity. In addition, post-germination seedling growth was improved under high salt condition, but showed hypersensitivity to ABA. RNA-sequencing analysis indicated that the genes involved in electron transport or energy pathway were induced and a number of gene responses to salt stress and ABA were regulated in Bna.AOX1b overexpressing seeds. Taken together, our results imply that Bna.AOX1b confers tolerance to osmotic and salt stress in terms of seed germination and seedling establishment by regulating stress responsive genes and the response to ABA, and could be utilized as a candidate gene in transgenic breeding.


Assuntos
Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Osmorregulação/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Ácido Abscísico , Sequência de Aminoácidos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Germinação/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Oxirredutases/química , Fenótipo , Filogenia , Proteínas de Plantas/química , Transporte Proteico , Plântula/genética
11.
J Plant Physiol ; 204: 16-26, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27497741

RESUMO

Endosomal sorting complexes required for transport (ESCRT) are well known in mammalians and yeast and plays an essential role in the formation of multi-vesicular bodies. Accumulating evidence has shown that ESCRT proteins contribute to proper plant development. CHMP7 (charged multi-vesicular body protein 7) is an ESCRT-III-related protein and functions in the endosomal sorting pathway in humans. However, its function in plants has not been explored in detail. In this study, we isolate the putative homolog of CHMP7 from rapeseed, BnCHMP7, which contains eight exons and encodes a protein consisting of 423 amino acid residues. Compared with the wild-type, overexpression of BnCHMP7 in Arabidopsis disturbs plant growth and decreases seed yield. Moreover, the transgenic plants also display early leaf senescence and hypersensitivity to dark treatment due to defects in autophagic degradation. Further study showed that BnCHMP7 is highly expressed in leaves and that YFP-BnCHMP7 is predominantly localized in endosome. Compared with human CHMP7, we found that BnCHMP7 not only interacts with ESCRT-III subunits SNF7.2 (CHMP4B), but also with VPS2.2 and CHMP1B. As expected, microarray analysis revealed that the expression of ESCRT transport genes is significantly affected. Additionally, the expression of some genes that are involved in senescence, protein synthesis and protein degradation is also altered in BnCHMP7-overexpressing plants. Taken together, BnCHMP7 encodes an endosome-localized protein, which causes dwarfism and leaf senescence as an ESCRT-III-related component.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Autofagia/genética , Sequência de Bases , Brassica rapa/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Análise de Sequência de DNA , Frações Subcelulares/metabolismo
12.
Gene ; 538(1): 113-22, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24406618

RESUMO

Selection of reference genes in Brassica napus, a tetraploid (4×) species, is a very difficult task without information on genome and transcriptome. By now, only several traditional reference genes which show significant expression differentiation under different conditions are used in B. napus. In the present study, based on genome and transcriptome data of the rapeseed Zhongshuang-11 cultivar, 14 candidate reference genes were screened for investigation in different tissues, cultivars, and treated conditions of B. napus. These genes were as follows: ELF5, ENTH, F-BOX7, F-BOX2, FYPP1, GDI1, GYF, MCP2d, OTP80, PPR, SPOC, Unknown1, Unknown2 and UBA. Among them, excluding GYF and FYPP1, another 12 genes, were identified to perform better than traditional reference genes ACTIN7 and GAPDH. To further validate the accuracy of the newly developed reference genes in normalization, expression levels of BnCAT1 (B. napus catalase 1) in different rapeseed tissues and seedlings under stress conditions were normalized by the three most stable reference genes PPR, GDI1, and ENTH and little difference existed in normalization results. To the best of our knowledge, this is the first time B. napus reference genes have been provided with the help of complete genome and transcriptome information. The new reference genes provided in this study are more accurate than previously reported reference genes in quantifying expression levels of B. napus genes.


Assuntos
Brassica/genética , Genes de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Transcriptoma , Brassica/metabolismo , Marcadores Genéticos , Padrões de Referência
13.
PLoS One ; 8(4): e62099, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637973

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding.


Assuntos
Brassica rapa/metabolismo , Brassica rapa/ultraestrutura , Óleos de Plantas/metabolismo , Sementes/metabolismo , Sementes/ultraestrutura , Brassica rapa/citologia , Cruzamento , Ácidos Graxos/análise , Ácidos Graxos Monoinsaturados , Organelas/metabolismo , Óleos de Plantas/química , Óleo de Brassica napus , Sementes/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa