RESUMO
The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.
Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Folistatina/fisiologia , Hipocampo/metabolismo , Neurogênese , Plasticidade Neuronal , Aprendizagem Espacial/fisiologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Cognição , Feminino , Potenciação de Longa Duração , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/fisiologiaRESUMO
Alzheimer's disease (AD) is a neurodegenerative disease that impairs multiple memory domains without an effective prevention or treatment approach. Amyloid plaque-induced neuroinflammation exacerbates neurodegeneration and cognitive impairment in AD. To reduce neuroinflammation, we applied prebiotics or synbiotics to modulate the gut-brain axis in the AD mouse model. AD-like deficits were reduced in mice treated with synbiotics, suggesting that dietary modulation of the gut-brain axis is a potential approach to delay AD progression.