Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nature ; 555(7696): 363-366, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513654

RESUMO

Sustainably feeding a growing population is a grand challenge, and one that is particularly difficult in regions that are dominated by smallholder farming. Despite local successes, mobilizing vast smallholder communities with science- and evidence-based management practices to simultaneously address production and pollution problems has been infeasible. Here we report the outcome of concerted efforts in engaging millions of Chinese smallholder farmers to adopt enhanced management practices for greater yield and environmental performance. First, we conducted field trials across China's major agroecological zones to develop locally applicable recommendations using a comprehensive decision-support program. Engaging farmers to adopt those recommendations involved the collaboration of a core network of 1,152 researchers with numerous extension agents and agribusiness personnel. From 2005 to 2015, about 20.9 million farmers in 452 counties adopted enhanced management practices in fields with a total of 37.7 million cumulative hectares over the years. Average yields (maize, rice and wheat) increased by 10.8-11.5%, generating a net grain output of 33 million tonnes (Mt). At the same time, application of nitrogen decreased by 14.7-18.1%, saving 1.2 Mt of nitrogen fertilizers. The increased grain output and decreased nitrogen fertilizer use were equivalent to US$12.2 billion. Estimated reactive nitrogen losses averaged 4.5-4.7 kg nitrogen per Megagram (Mg) with the intervention compared to 6.0-6.4 kg nitrogen per Mg without. Greenhouse gas emissions were 328 kg, 812 kg and 434 kg CO2 equivalent per Mg of maize, rice and wheat produced, respectively, compared to 422 kg, 941 kg and 549 kg CO2 equivalent per Mg without the intervention. On the basis of a large-scale survey (8.6 million farmer participants) and scenario analyses, we further demonstrate the potential impacts of implementing the enhanced management practices on China's food security and sustainability outlook.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Eficiência Organizacional , Fazendeiros , China , Técnicas de Apoio para a Decisão , Grão Comestível/crescimento & desenvolvimento , Política Ambiental , Fertilizantes/estatística & dados numéricos , Abastecimento de Alimentos/métodos , Efeito Estufa , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835227

RESUMO

Melatonin, a pleiotropic regulatory molecule, is involved in the defense against heavy metal stress. Here, we used a combined transcriptomic and physiological approach to investigate the underlying mechanism of melatonin in mitigating chromium (Cr) toxicity in Zea mays L. Maize plants were treated with either melatonin (10, 25, 50 and 100 µM) or water and exposed to 100 µM K2Cr2O7 for seven days. We showed that melatonin treatment significantly decreased the Cr content in leaves. However, the Cr content in the roots was not affected by melatonin. Analyses of RNA sequencing, enzyme activities, and metabolite contents showed that melatonin affected cell wall polysaccharide biosynthesis, glutathione (GSH) metabolism, and redox homeostasis. During Cr stress, melatonin treatment increased cell wall polysaccharide contents, thereby retaining more Cr in the cell wall. Meanwhile, melatonin improved the GSH and phytochelatin contents to chelate Cr, and the chelated complexes were then transported to the vacuoles for sequestration. Furthermore, melatonin mitigated Cr-induced oxidative stress by enhancing the capacity of enzymatic and non-enzymatic antioxidants. Moreover, melatonin biosynthesis-defective mutants exhibited decreased Cr stress resistance, which was related to lower pectin, hemicellulose 1, and hemicellulose 2 than wild-type plants. These results suggest that melatonin alleviates Cr toxicity in maize by promoting Cr sequestration, re-establishing redox homeostasis, and inhibiting Cr transport from the root to the shoot.


Assuntos
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/metabolismo , Zea mays/metabolismo , Cromo/metabolismo , Glutationa/metabolismo
3.
J Sci Food Agric ; 103(5): 2618-2630, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36321249

RESUMO

BACKGROUND: Cadmium (Cd) contamination in farmland is a serious environmental and safety issue affecting plant growth, crop productivity, and human health. This study aimed to investigate genotypic variation in root morphology and Cd accumulations under moderate Cd stress among diverse maize genotypes. Twenty maize genotypes with contrasting root systems were assessed for Cd tolerance 39 days after transplanting (V6, six-leaf stage) under 20 µmol L-1 CdCl2 using a semi-hydroponic phenotyping platform in a glasshouse. RESULTS: Cadmium stress significantly inhibited plant growth across all genotypes. Genotypic variation in response to Cd toxicity was apparent: shoot dry weight varied from 0.13 (genotype NS2020) to 0.35 g plant-1 (Dongke301) with deductions up to 63% compared with non-Cd treatment (CK). Root dry weight of 20 genotypes ranged from 0.06 (NS2020) to 0.18 g plant-1 (Dongke301) with a deduction up to 56%. Root length ranged from 2.21 (NS590b) to 9.22 m (Dongke301) with a maximal decline of 76%. Cadmium-treated genotypes generally had thicker roots and average diameter increased by 34% compared with CK. Genotypes had up to 3.25 and 3.50 times differences in shoot and root Cd concentrations, respectively. Principal component and cluster analyses assigned the 20 genotypes into Cd-tolerant (five genotypes) and Cd-sensitive (15 genotypes) groups. CONCLUSIONS: Maize genotypes varied significantly in response to moderate Cd stress. Cadmium-tolerant genotypes optimized root morphology and Cd accumulation and distribution. This study could assist in the selection and breeding of new cultivars with improved adaptation to Cd-contaminated soil for food and feed or land remediation purposes. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/análise , Zea mays , Melhoramento Vegetal , Adaptação Fisiológica , Genótipo , Raízes de Plantas/química , Poluentes do Solo/análise
4.
Ecotoxicol Environ Saf ; 230: 113137, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979312

RESUMO

Soil cadmium (Cd) contamination is a serious problem on agricultural land. Adequate nitrogen (N) may help ameliorate plant fitness under Cd stress. This study examined the role of N application in improving maize tolerance to Cd stress. Two maize genotypes, Zhongke11 (larger root system) and Shengrui999 (smaller root system), were grown in a loessal soil amended with Cd (Cd0, no added Cd; Cd1, 20 mg kg-1 soil as CdCl2·2.5 H2O) and N (N0, no added N; N1, 100 mg kg-1 soil as urea) under greenhouse, and plants were assessed at silking and maturity stages. Maize plants exhibited moderate Cd stress with significantly reduced grain yield, especially under low N (N1). Roots accumulated more Cd than above-ground parts. Grain Cd concentration was the least (0.05-0.06 µg g-1) among all organs which is below the safety threshold. Leaf Cd concentrations (0.24-1.18 mg kg-1) were also under the toxicity threshold. Nitrogen addition significantly improved plant growth, chlorophyll content, photosynthesis traits, and tissue Cd contents, and reduced Cd concentration in soil compared to N0 treatment. Nitrogen promoted Cd bioconcentration and translocation factors in stem and leaves. Cadmium stress reduced N fertilizer agronomic efficiency at maturity. At maturity, root Cd content was positively correlated with root N and calcium accumulation, and stem Cd content was positively correlated with stem N content (both P ≤ 0.05). Genotypes with different root system size differed in response to Cd toxicity and / or N deficit. The small-rooted genotype Shengrui999 was more tolerant to moderate Cd stress than the large-rooted Zhongke11. Addition of N ameliorated Cd stress in both maize genotypes by improving plant growth performance, and regulating Cd translocations among plant organs.

5.
BMC Plant Biol ; 21(1): 457, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620078

RESUMO

BACKGROUND: Inoculation of arbuscular mycorrhizal (AM) fungi has the potential to alleviate salt stress in host plants through the mitigation of ionic imbalance. However, inoculation effects vary, and the underlying mechanisms remain unclear. Two maize genotypes (JD52, salt-tolerant with large root system, and FSY1, salt-sensitive with small root system) inoculated with or without AM fungus Funneliformis mosseae were grown in pots containing soil amended with 0 or 100 mM NaCl (incrementally added 32 days after sowing, DAS) in a greenhouse. Plants were assessed 59 DAS for plant growth, tissue Na+ and K+ contents, the expression of plant transporter genes responsible for Na+ and/or K+ uptake, translocation or compartmentation, and chloroplast ultrastructure alterations. RESULTS: Under 100 mM NaCl, AM plants of both genotypes grew better with denser root systems than non-AM plants. Relative to non-AM plants, the accumulation of Na+ and K+ was decreased in AM plant shoots but increased in AM roots with a decrease in the shoot: root Na+ ratio particularly in FSY1, accompanied by differential regulation of ion transporter genes (i.e., ZmSOS1, ZmHKT1, and ZmNHX). This induced a relatively higher Na+ efflux (recirculating) rate than K+ in AM shoots while the converse outcoming (higher Na+ influx rate than K+) in AM roots. The higher K+: Na+ ratio in AM shoots contributed to the maintenance of structural and functional integrity of chloroplasts in mesophyll cells. CONCLUSION: AM symbiosis improved maize salt tolerance by accelerating Na+ shoot-to-root translocation rate and mediating Na+/K+ distribution between shoots and roots.


Assuntos
Fungos/fisiologia , Raízes de Plantas/química , Brotos de Planta/química , Potássio/análise , Tolerância ao Sal/fisiologia , Sódio/análise , Zea mays/metabolismo , Zea mays/microbiologia , Variação Genética , Genótipo , Transporte de Íons/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Estresse Salino/fisiologia , Sódio/metabolismo , Simbiose/fisiologia , Zea mays/genética
6.
BMC Plant Biol ; 20(1): 501, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33143654

RESUMO

BACKGROUND: Nitrogen (N) deficiency is a major constraint for plant production in many areas. Developing the new crop genotypes with high productivity under N deficiency is an important approach to maintain agricultural production. Therefore, understanding how plant response to N deficiency and the mechanism of N-deficiency tolerance are very important for sustainable development of modern crop production. RESULTS: In this study, the physiological responses and fatty acid composition were investigated in 24 wheat cultivars under N-deficient stress. Through Pearson's correlation analysis and principal component analysis, the responses of 24 wheat cultivars were evaluated. The results showed that the plant growth and carbohydrate metabolism were all differently affected by N deficiency in all tested wheat cultivars. The seedlings that had high shoot biomass also maintained high level of chlorophyll content under N deficiency. Moreover, the changes in fatty acid composition, especially the linolenic acid (18:3) and the double bond index (DBI), showed close positive correlations with the shoot dry weight and chlorophyll content alterations in response to N-deficient condition. These results indicated that beside the chlorophyll content, the linolenic acid content and DBI may also contribute to N-deficiency adaptation, thus could be considered as efficient indicators for evaluation of different response in wheat seedlings under N-deficient condition. CONCLUSIONS: The alteration in fatty acid composition can potentially contribute to N-deficiency tolerance in plants, and the regulation of fatty acid compositions maybe an effective strategy for plants to adapt to N-deficient stress.


Assuntos
Nitrogênio/deficiência , Plântula/fisiologia , Triticum/fisiologia , Ácido alfa-Linolênico/fisiologia , Ácidos Graxos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Ácido alfa-Linolênico/metabolismo
7.
BMC Plant Biol ; 20(1): 218, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410579

RESUMO

BACKGROUND: Water deficiency is likely to become more frequent and intense as a result of global climate change, which may severely impact agricultural production in the world. The positive effects of melatonin (MEL) on alleviation drought or osmotic stress-induced water deficiency in plants has been well reported. However, the underlying mechanism of MEL on the detailed process of plant water uptake and transport under water deficiency condition remains largely unknown. RESULTS: Application of 1 µM MEL led to enhanced tolerance to water deficiency stress in maize seedlings, as evidenced by maintaining the higher photosynthetic parameters, leaf water status and plant transpiration rate. The relatively higher whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lpr) in MEL-treated seedlings suggest that exogenous MEL alleviated water deficiency stress by promoting root water absorption. HgCl2 (aquaporin inhibitor) treatment inhibit the transpiration rate in MEL-treated plants greater than those of MEL-untreated; after recovery by dithiothreitol (DTT, anti-inhibitor), the transpiration rate in MEL-treated plants increased much higher than those of untreated plants. Moreover, under water deficiency, the transcription level of aquaporin genes was up-regulated by MEL application, and the H2O2 was less accumulated in MEL-treated root. CONCLUSIONS: Exogenous MEL promoted aquaporin activity, which contributed to the maintaining of Lpr and Kplant under short-term water deficiency. The increased water uptake and transport lead to improved water status and thus increased tolerance to PEG-induced short-term water deficiency in maize seedlings.


Assuntos
Melatonina/farmacologia , Transpiração Vegetal , Polietilenoglicóis/administração & dosagem , Água/metabolismo , Zea mays/fisiologia , Zea mays/efeitos dos fármacos
8.
Nature ; 514(7523): 486-9, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25186728

RESUMO

Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil-crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha(-1)), 7.2 Mg ha(-1) and 10.5 Mg ha(-1) to 8.5 Mg ha(-1), 8.9 Mg ha(-1) and 14.2 Mg ha(-1), respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil-crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/provisão & distribuição , Meio Ambiente , Ração Animal , China , Fertilizantes/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Nitrogênio/metabolismo
9.
Environ Res ; 184: 109261, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087442

RESUMO

To unravel the linkages between ecological ratios (C:N:P) and the microbial community in rhizosphere soil in response to fertilizer management, soil samples were collected from a proso millet (Panicum miliaceum L.) field under different fertilizer management systems, including nitrogen fertilizer (NF), phosphorus fertilizer (PF), combined N and P (NP) fertilizer, and organic fertilizer (OF); no fertilizer (CK) was used as a control. Furthermore, 16S rRNA and ITS gene sequencing were applied to represent the bacterial and fungal diversity in the soil. Moreover, the elemental properties, including the carbon (C), nitrogen (N), and phosphorus (P) contents, in the microbial biomass and rhizosphere soil were evaluated. The results showed that the C, N, and P contents and microbial biomass (MBC, MBN and MBP, respectively) in the rhizosphere soil were augmented following fertilizer management. Increases in the alpha diversity indices (Shannon and Chao 1) of soil bacteria and fungi were observed in response to the fertilizers, and the responses were more closely related to the soil C:N and N:P ratios than to the C:P ratio. Additionally, with high relative abundances (>1%) across all soil samples, the composition of soil microbial phyla levels revealed different trends following fertilizer management. The abundances of Actinobacteria and Gemmatimonadetes increased, while the abundances of Acidobacteria and Nitrospirae decreased (P < 0.05) following fertilizer management. Among the fungal taxa, the abundances of Ascomycota and Mortierellomycota responded positively to fertilizer. These results were largely influenced by changes in the C:N and N:P ratios in both the soil and microbial biomass. Overall, significantly increased C:N and decreased N:P ratios in the soil reflected the N deficiency that would limit increased microbial biomass and diversity. Together, all of these results indicated that interactions between ecological ratios (C:N:P) and microbial community composition play vital roles in resource imbalance in dynamic environments. Thus, N status should be an important factor for sustainable agricultural management. Moreover, the synergistic effects were better with the combination of C, N, and P or with organic fertilizer than with C, N and P separately.


Assuntos
Fertilizantes , Microbiota , Microbiologia do Solo , Agricultura , Nitrogênio , Nutrientes , RNA Ribossômico 16S , Rizosfera , Solo
10.
Ecotoxicol Environ Saf ; 203: 110999, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888604

RESUMO

Aluminium (Al) is a key element that plays a major role in inhibiting plant growth and productivity under acidic soils. While lipids may be involved in plant tolerance/sensitivity to Al, the role of monogalactosyldiacylglycerol (MGDG) in Al response remains unknown. In this study, Arabidopsis MGDG synthase (AtMGD) mutants (mgd1, mgd2 and mgd3) and wild-type (Col-0) plants were treated with AlCl3; the effect of aluminium on root growth, aluminium distribution, plasma membrane integrity, lipid peroxidation, hydrogen peroxide content and membrane lipid compositions were analysed. Under Al stress, mgd mutants exhibited a more severe root growth inhibition, plasma membrane integrity damage and lipid peroxidation compared to Col-0. Al accumulation in root tips showed no difference between Col-0 and mutants under Al stress. Lipid analysis demonstrated that under Al treatment the MGDG content in all plants and MGDG/DGDG (digalactosyldiacylglycerol) remarkably reduced, especially in mutants impairing the stability and permeability of the plasma membrane. These results indicate that the Arabidopsis mgd mutants are hypersensitive to Al stress due to the reduction in MGDG content, and this is of great significance in the discovery of effective measures for plants to inhibit aluminium toxicity.


Assuntos
Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Galactolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Alumínio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactolipídeos/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
11.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271965

RESUMO

Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield.


Assuntos
Secas , Raízes de Plantas/metabolismo , Proteoma , Proteômica , Plântula , Sorghum/metabolismo , Estresse Fisiológico , Adaptação Biológica , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Prolina , Transporte Proteico , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Plant Biotechnol J ; 15(3): 331-343, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27565626

RESUMO

The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.


Assuntos
Populus/genética , Tolerância ao Sal/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Populus/efeitos dos fármacos , Interferência de RNA , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia
13.
Physiol Plant ; 161(2): 211-223, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432686

RESUMO

Lipid peroxide-derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage-inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR-OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild-type under Al stress. Exogenous application of 4-hydroxy-2-nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild-type plants. GR-OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2 O2 due to Al stress in GR-OE plants was lower by 26% than in wild-type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)-2-heptenal and n-octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.


Assuntos
Alumínio/toxicidade , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aldeídos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Compostos de Sulfidrila/metabolismo
14.
BMC Genomics ; 17: 240, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26984398

RESUMO

BACKGROUND: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysi, we performed genome-wide identification of GAPDH genes in wheat and analyzed their structural characteristics and expression patterns under abiotic stress in wheat. RESULTS: A total of 22 GAPDH genes were identified in wheat cv. Chinese spring; the phylogenetic and structure analysis showed that these GAPDH genes could be divided into four distinct subfamilies. The expression profiles of GAPDH genes showed tissue specificity all over plant development stages. The qRT-PCR results revealed that wheat GAPDHs were involved in several abiotic stress response. CONCLUSIONS: Wheat carried 22 GAPDH genes, representing four types of plant GAPDHs (gapA/B, gapC, gapCp and gapN). Whole genome duplication and segmental duplication might account for the expansion of wheat GAPDHs. Expression analysis implied that GAPDHs play roles in plants abiotic stress tolerance.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/genética , Família Multigênica , Proteínas de Plantas/genética , Triticum/genética , Filogenia , Estresse Fisiológico , Transcriptoma , Triticum/enzimologia
15.
Ann Bot ; 118(2): 305-15, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325899

RESUMO

BACKGROUND AND AIMS: Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the alleviating effect of Si on potassium (K) deficiency and its underlying mechanism are poorly understood. Here, we examined whether Si-regulated putrescine (Put) metabolisms are involved in Si-alleviated K deficiency. METHODS: Sorghum seedlings were grown in K deficiency solution with and without Si for 15 d. The influence of K deficiency and Si on leaf chlorosis symptoms, K(+) concentration, polyamine (PA) levels, amine oxidase activities, the transcription of Put synthesis genes, antioxidant enzyme activities and H2O2 accumulation were measured. KEY RESULTS: Under K-sufficient conditions, plant growth was not affected by Si application. Si application significantly alleviated the growth inhibition induced by K-deficient stress, however. K deficiency induced leaf chlorosis and reduction in several leaf chlorosis-related metrics, including photosynthesis, efficiency of photosystem II photochemistry, chlorophyll content and chlorophyll a/b ratio; all of these changes were moderated by Si application. Si application did not influence the K(+) concentration in leaves under K-sufficient or K-deficient conditions. It did, however, decrease the excessive accumulation of Put that was otherwise induced by K deficiency. Simultaneously, Put synthesis gene transcription and activation of amine oxidases were down-regulated by Si application under K-deficient conditions. In addition, Si reduced K-deficiency-enhanced antioxidant enzyme activities and decreased K-deficiency-induced H2O2 accumulation. CONCLUSIONS: These results indicate that Si application could reduce K-deficiency-induced Put accumulation by inhibiting Put synthesis and could decrease H2O2 production via PA oxidation. Decreased H2O2 accumulation contributes to the alleviation of cell death, thereby also alleviating K-deficiency-induced leaf chlorosis and necrosis.


Assuntos
Fotossíntese/efeitos dos fármacos , Poliaminas/metabolismo , Deficiência de Potássio , Putrescina/metabolismo , Silício/farmacologia , Sorghum/efeitos dos fármacos , Antioxidantes/metabolismo , Carboxiliases/metabolismo , Clorofila/metabolismo , Clorofila A , Peróxido de Hidrogênio/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/fisiologia , Sorghum/enzimologia , Sorghum/fisiologia
16.
Plant Physiol ; 165(3): 1144-1155, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24843077

RESUMO

In plants, the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactodiacylglycerol (DGDG) are major constituents of photosynthetic membranes in chloroplasts. One of the key enzymes for the biosynthesis of these galactolipids is MGDG synthase (MGD). To investigate the role of MGD in the plant's response to salt stress, we cloned an MGD gene from rice (Oryza sativa) and generated tobacco (Nicotiana tabacum) plants overexpressing OsMGD. The MGD activity in OsMGD transgenic plants was confirmed to be higher than that in the wild-type tobacco cultivar SR1. Immunoblot analysis indicated that OsMGD was enriched in the outer envelope membrane of the tobacco chloroplast. Under salt stress, the transgenic plants exhibited rapid shoot growth and high photosynthetic rate as compared with the wild type. Transmission electron microscopy observation showed that the chloroplasts from salt-stressed transgenic plants had well-developed thylakoid membranes and properly stacked grana lamellae, whereas the chloroplasts from salt-stressed wild-type plants were fairly disorganized and had large membrane-free areas. Under salt stress, the transgenic plants also maintained higher chlorophyll levels. Lipid composition analysis showed that leaves of transgenic plants consistently contained significantly higher MGDG (including 18:3-16:3 and 18:3-18:3 species) and DGDG (including 18:3-16:3, 18:3-16:0, and 18:3-18:3 species) contents and higher DGDG-MGDG ratios than the wild type did under both control and salt stress conditions. These results show that overexpression of OsMGD improves salt tolerance in tobacco and that the galactolipids MGDG and DGDG play an important role in the regulation of chloroplast structure and function in the plant salt stress response.

17.
J Exp Bot ; 65(17): 4747-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24879770

RESUMO

The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier.


Assuntos
Aquaporinas/genética , Pressão Osmótica , Proteínas de Plantas/genética , Silício/fisiologia , Sorghum/fisiologia , Água/metabolismo , Aquaporinas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase , Plântula/fisiologia , Sorghum/genética , Regulação para Cima
18.
Plant Physiol Biochem ; 214: 108883, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38943879

RESUMO

Changes of membrane lipid composition contribute to plant adaptation to various abiotic stresses. Here, a comparative study was undertaken to investigate the mechanisms of how lipid alteration affects plant growth and development under nitrogen (N) deficiency. Two wheat cultivars: the N deficiency-tolerant cultivar Xiaoyan 6 (XY) and the N deficiency-sensitive cultivar Aikang 58 (AK) were used to test if the high N-deficiency tolerance was related with lipid metabolism. The results showed that N deficiency inhibited the morpho-physiological parameters in both XY and AK cultivars, which showed a significant decrease in biomass, N content, photosynthetic efficiency, and lipid contents. However, these decreases were more pronounced in AK than XY. In addition, XY showed a notable increase in fatty acid unsaturation, relatively well-maintained chloroplast ultrastructure, and minimized damage of lipid peroxidation and enhanced PSII activity under N-deficient condition, as compared with AK. Transcription levels of many genes involved in lipid biosynthesis and fatty acid desaturation were up-regulated in response to N deficiency in two wheat cultivars, while the expressions were much higher in XY than AK under N deficiency. These results highlight the importance of alterations in lipid metabolism in N deficiency tolerance in wheat. High levels of lipid content and unsaturated fatty acids maintained the membrane structure and function, contributing to high photosynthesis and antioxidant capacities, thereby improved the tolerance to N deficiency.

19.
Plant Physiol Biochem ; 206: 108274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100891

RESUMO

Drought induces alteration in membrane lipid composition in plants; however, still little is known about whether membrane lipid remodeling plays a role in plant drought acclimation, including both drought tolerance and recovery, especially in crops. Here, we imposed natural progressive drought and re-watering in 18 maize genotypes at the seedling stage, and analyzed the physiological responses, drought tolerance and drought acclimation capabilities, contents of lipids, and fatty acid compositions. The results showed that drought caused significant reductions in shoot dry weight, relative water content, Fv/Fm, total lipid content, and double bond index (DBI) in most genotypes, while re-watering partially recovered these reductions. Meanwhile, the total lipid content, fatty acid composition, and DBI were also changed obviously in response to drought and re-watering. In order to explore the relationship between membrane lipid change and plant drought response, we did a principal component analysis. The results showed that C18:3 fatty acid contributed greatly to drought tolerance, and C16:2 and C16:3 fatty acids were more responsible for drought recovery. Meanwhile, DBI showed significant positive correlations with shoot dry weight and relative water content, but a negative association with lipid peroxidation, and more importantly, DBI was important for both drought tolerance and recovery. These alterations in membrane lipid composition may facilitate increasing membrane fluidity and decreasing membrane damage, thus maintaining the high photosynthetic capability under drought. Our results suggest that lipid remodeling is important for drought tolerance and recovery in crops, and different fatty acid species have different roles in crop drought acclimation.


Assuntos
Ácidos Graxos , Zea mays , Zea mays/genética , Secas , Aclimatação/fisiologia , Água , Lipídeos de Membrana
20.
Plant Physiol Biochem ; 205: 108135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979572

RESUMO

Cadmium (Cd) is detrimental to both plants and humans. Maize (Zea mays L.) genotypes exhibit variations in Cd accumulations. This study examined variations in Cd accumulation and tolerance among four maize genotypes with contrasting root morphology. The four maize genotypes were cultivated in a semi-hydroponic system with three Cd concentrations (0, 10, 20 µmol L-1). The effects of Cd on plant growth and physiology were assessed 39 days after transplanting. Results showed that root characteristics were positively correlated with root Cd accumulation and the bioconcentration factor under Cd20 treatment. Genotypes Shengrui999 and Zhengdan958 exhibited higher total Cd content than Xundan29 and Zhongke11 under Cd20 conditions. Cd toxicity led to membrane degradation of chloroplast mesophyll cells, loosening and swelling of grana lamella, and reduced starch reserves. The greater tolerance of Shengrui999 and Zhengdan958 was contributed to factors such as root biomass, shallower root depth, higher Cd content, accumulation of osmolyte such as soluble protein, antioxidant activities such as catalase (CAT), and the presence of phytohormone gibberellic acid. The study establishes a link between root morphology, Cd accumulation, and tolerance in maize plants, as demonstrated by the higher Cd accumulation and shallower root system in Cd-tolerant genotypes. This research provides a foundation for breeding maize cultivars better suited for adaptation to moderate Cd-contaminated environments.


Assuntos
Cádmio , Poluentes do Solo , Humanos , Cádmio/metabolismo , Zea mays , Melhoramento Vegetal , Fenômenos Fisiológicos Vegetais , Cloroplastos/metabolismo , Raízes de Plantas , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa