Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36127507

RESUMO

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Assuntos
Dinorfinas , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Dinorfinas/metabolismo , Receptores Opioides kappa , Morfina , Analgésicos Opioides/farmacologia , Regulação para Cima , Antagonistas de Entorpecentes/farmacologia , Hipocampo/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Addict Biol ; 28(9): e13323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644896

RESUMO

Chronic exposure to methamphetamine (METH) causes severe and persistent cognitive impairment. The present study aimed to investigate the role of dynorphin/κ opioid receptor (KOR) system in the development of METH-induced cognitive impairment. We found that mice showed significant cognitive impairment in the novel object recognition test (NOR) following daily injections of METH (10 mg/kg) for seven consecutive days. Systemic blockade of KOR prevented METH-induced cognitive impairment by pretreatment of the selective KOR antagonist norBNI (10 mg/kg, i.p.) or KOR deletion. Then, significant increased dynorphin and KOR mRNA were observed exclusively in prelimbic cortex (PL) other than infralimbic cortex. Finally, microinjection with norBNI into PL also improved cognitive memory in METH-treated mice using NOR and spontaneous alternation behaviour test. Our results demonstrated that dynorphin/KOR system activation in PL may be a possible mechanism for METH-induced cognitive impairment and shed light on KOR antagonists as a potential neuroprotective agent against the cognitive deficits induced by drug abuse.


Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Metanfetamina , Animais , Camundongos , Dinorfinas , Receptores Opioides kappa , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Metanfetamina/farmacologia , Antagonistas de Entorpecentes
3.
Cell Rep ; 37(5): 109913, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731618

RESUMO

Opiates produce a strong rewarding effect, but abstinence from opiate use emerges with severe negative emotions. Depression is one of the most frequent emotion disorders associated with opiate abstinence, which is thought to be a main cause for relapse. However, neurobiological bases of such an aversive emotion processing are poorly understood. Here, we find that morphine abstinence activates κ-opioid receptors (KORs) by increasing endogenous KOR ligand dynorphin expression in the amygdala, which in turn facilitates glutamate transporter 1 (GLT1) expression by activation of p38 mitogen-activated protein kinase (MAPK). Upregulation of GLT1 expression contributes to opiate-abstinence-elicited depressive-like behaviors through modulating amygdalar glutamatergic inputs to the nucleus accumbens (NAc). Intra-amygdala injection of GLT1 inhibitor DHK or knockdown of GLT1 expression in the amygdala significantly suppresses morphine-abstinence-induced depressive-like behaviors. Pharmacological and pharmacogenetic activation of amygdala-NAc projections prevents morphine-abstinence-induced behaviors. Overall, our study provides key molecular and circuit insights into the mechanisms of depression associated with opiate abstinence.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal , Depressão/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Morfina , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Depressão/induzido quimicamente , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Dinorfinas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Transportador de Glucose Tipo 1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/genética , Transdução de Sinais , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Neuropharmacology ; 168: 108028, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151646

RESUMO

Itch is an unpleasant feeling that triggers scratching behavior. Much progress has been made in identifying the mechanism of itch at the peripheral and spinal levels, however, itch circuits in the brain remain largely unexplored. We previously found that anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) inputs modulated histamine-induced itch sensation, but how itch information was transmitted to ACC remained unclear. Here, we demonstrated that the anteromedial thalamic nucleus (AM) was activated during histaminergic itch, and there existed reciprocal neuronal projections between AM and ACC. Disconnection between AM and ACC resulted in a significant reduction of histaminergic, but not nonhistaminergic, itch-related scratching behavior. Optogenetic activation of AM-ACC, but not ACC-AM, projections evoked histaminergic itch sensation. Thus, our studies firstly reveal that AM is critical for histaminergic itch sensation and AM-ACC projections modulate histaminergic itch-induced scratching behavior.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Giro do Cíngulo/metabolismo , Histamina/metabolismo , Prurido/metabolismo , Sensação/fisiologia , Animais , Núcleos Anteriores do Tálamo/química , Giro do Cíngulo/química , Histamina/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/química , Vias Neurais/metabolismo , Optogenética/métodos , Prurido/diagnóstico
5.
Behav Brain Res ; 353: 129-136, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003977

RESUMO

The abuse of amphetamine-type stimulants (ATS) has become a global public health issue in recent years, these new-type drugs can cause addiction and serious cognitive impairment. However, there are no effective methods for the prevention and treatment of ATS addiction at present. Repetitive transcranial magnetic stimulation (rTMS) is a painless and non-invasive new therapeutic approach that has been used for the treatment of depression and other neuropsychiatric disorders, but whether it can be used to treat drug addiction is unclear. In the present study, we investigated the possible effects of rTMS on methamphetamine(METH)-induced conditioned place preference (CPP). High-frequency (10 Hz) and low-frequency stimulation patterns (1 Hz) were applied to test the effect of rTMS on METH-induced CPP. The results showed that low-frequency but not high-frequency rTMS could block METH-CPP, accompanied with a downregulation of gamma-aminobutyric acid type B receptor subunit 1 (GABABR1) expression in rat dorsolateral striatum. These results suggested that low-frequency rTMS could effectively inhibit the development of METH addiction and shed light on the rTMS as a potential approach for the prevention of drug addiction.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/prevenção & controle , Estimulação Magnética Transcraniana , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Masculino , Metanfetamina/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Estimulação Magnética Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa