Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; : e9477, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658103

RESUMO

RATIONALE: Higher resolution in fieldable mass spectrometers (MS) is desirable in space flight applications to enable resolving isobaric interferences at m/z < 60 u. Resolution in portable cycloidal MS coupled with array detectors could be improved by reducing the slit width and/or by reducing the width of the detector pixels. However, these solutions are expensive and can result in reduced sensitivity. In this paper, we demonstrate high-resolution spectral reconstruction in a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) without changing the slit or detector pixel sizes using a class of signal processing techniques called super-resolution (SR). METHODS: We developed an SR reconstruction algorithm using a sampling SR approach whereby a set of spatially shifted low-resolution measurements are reconstructed into a higher-resolution spectrum. This algorithm was applied to experimental data collected using the C-CAMMS prototype. It was then applied to synthetic data with additive noise, system response variation, and spatial shift nonuniformity to investigate the source of reconstruction artifacts in the experimental data. RESULTS: Experimental results using two ½ pixel shifted spectra resulted in a resolution of ¾ pixel full width at half maximum (FWHM) at m/z = 28 u. This resolution is equivalent to 0.013 u, six times better than the resolution previously published at m/z = 28 for N2 + using C-CAMMS. However, the reconstructed spectra exhibited some artifacts. The results of the synthetic data study indicate that the artifacts are most likely caused by the system response variation. CONCLUSIONS: This paper demonstrates super-resolution spectral reconstruction in C-CAMMS without changing the slit or detector pixel sizes using a sampling SR approach. With improvements, this technique could be used to resolve isobaric interferences in a portable cycloidal MS for space flight applications.

2.
Anal Chem ; 93(33): 11357-11363, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370439

RESUMO

In 1938, Walker Bleakney and John A. Hipple first described the cycloidal mass analyzer as the only mass analyzer configuration capable of "perfect" ion focusing. Why has their geometry been largely neglected for many years and how might it earn a respectable place in the world of modern chemical analysis? This Perspective explores the properties of the cycloidal mass analyzer and identifies the lack of suitable ion array detectors as a significant reason why cycloidal mass analyzers are not widely used. The recent development of capacitive transimpedance amplifier array detectors can enable several techniques using cycloidal mass analyzers including spatially coded apertures and single particle mass analysis with a "virtual-slit", helping the cycloidal mass analyzer earn a respectable place in chemical analysis.


Assuntos
Amplificadores Eletrônicos
3.
Proc Natl Acad Sci U S A ; 115(18): 4541-4544, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29650539

RESUMO

Forensic science is critical to the administration of justice. The discipline of forensic science is remarkably complex and includes methodologies ranging from DNA analysis to chemical composition to pattern recognition. Many forensic practices developed under the auspices of law enforcement and were vetted primarily by the legal system rather than being subjected to scientific scrutiny and empirical testing. Beginning in the 1990s, exonerations based on DNA-related methods revealed problems with some forensic disciplines, leading to calls for major reforms. This process generated a National Academy of Science report in 2009 that was highly critical of many forensic practices and eventually led to the establishment of the National Commission for Forensic Science (NCFS) in 2013. The NCFS was a deliberative body that catalyzed communication between nonforensic scientists, forensic scientists, and other stakeholders in the legal community. In 2017, despite continuing problems with forensic science, the Department of Justice terminated the NCFS. Just when forensic science needs the most support, it is getting the least. We urge the larger scientific community to come to the aid of our forensic colleagues by advocating for urgently needed research, testing, and financial support.


Assuntos
Ciências Forenses/educação , Ciências Forenses/métodos , Direito Penal , Ciências Forenses/legislação & jurisprudência , Humanos , Pesquisa
4.
J Am Soc Mass Spectrom ; 35(5): 855-861, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623944

RESUMO

Spatial aperture coding is a technique used to improve throughput without sacrificing resolution both in optical spectroscopy and sector mass spectrometry (MS). Previous work demonstrated that aperture coding combined with a position-sensitive array detector in a miniature cycloidal mass spectrometer was successful in providing high-throughput, high-resolution measurements. However, due to poor alignment and field nonuniformities, reconstruction artifacts were present. Recently, significant progress was made in eliminating most of the reconstruction artifacts with improved field uniformity and alignment. However, artifacts as large as 1/3 of the main peak were still observed at low mass (<17 u). Such artifacts will reduce accuracy in identification and quantification of analytes, reducing the impact of the throughput advantage gained by using a coded aperture. The artifacts were hypothesized to be a result of a mass dependent in curvature of ions in the ion source. Ions with higher mass (m/z > 17 u) and a larger curvature did not pass through all slits in the coded aperture. Therefore, when reconstructing with a system response derived from the aperture image from a higher mass m/z = 32 u ion, reconstruction artifacts appeared for m/z < 17 u. In this work, two methods were implemented to significantly reduce the presence of artifacts in reconstructed data. First, we modified the reconstruction algorithm to incorporate a mass-dependent system response function across the mass range (10-110 u). This method reduced the size of the artifacts by 82%. Second, to validate the hypothesis that the mass-dependent system response function was a result of differences in curvature of ions in the ion source, we modified the design of the ion source by shifting the coded aperture slits relative to the center of the ionization volume. This method resulted in ions of all masses passing through all slits in the coded aperture, a constant system response function across the entire mass range. Artifacts were reduced by 94%.

5.
J Mass Spectrom ; 57(7): e4874, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35836410

RESUMO

With the advent of technologies such as ion array detectors and high energy permanent magnet materials, there is renewed interest in the unique focusing properties of the cycloidal mass analyzer and its ability to enable small, high-resolution, and high-sensitivity instruments. However, most literature dealing with the design of cycloidal mass analyzers assumes a single channel detector because at the time of those publications, compatible multichannel detectors were not available. This manuscript introduces and discusses considerations and a procedure for designing cycloidal mass analyzers coupled with focal plane ion array detectors. To arrive at a set of relevant design considerations, we first review the unique focusing properties of the cycloidal mass analyzer and then present calculations detailing how the dimensions and position of the focal plane array detector relative to the ion source determine the possible mass ranges and resolutions of a cycloidal mass analyzer. We present derivations and calculations used to determine the volume of homogeneous electric and magnetic fields needed to contain the ion trajectories and explore the relationship between electric and magnetic field homogeneity on resolving power using finite element analysis (FEA) simulations. A set of equations relating the electric field homogeneity to the geometry of the electric sector electrodes was developed by fitting homogeneity values from 78 different FEA models. Finally, a sequence of steps is suggested for designing a cycloidal mass analyzer employing an array detector.


Assuntos
Desenho de Equipamento
6.
J Am Soc Mass Spectrom ; 32(2): 509-518, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33382610

RESUMO

Cycloidal sector mass analyzers have, in principle, perfect focusing due to perpendicularly oriented uniform electric and magnetic fields, making them ideal candidates for incorporation of spatially coded apertures. We have previously demonstrated a proof-of-concept cycloidal-coded aperture miniature mass spectrometer (C-CAMMS) instrument and achieved a greater than 10-fold increase in throughput without sacrificing resolution, compared with a single slit instrument. However, artifacts were observed in the reconstructed mass spectrum due to nonuniformity in the electric field and misalignment of the detector and the ion source with the mass analyzer focal plane. In this work, we modified the mass analyzer design of the previous C-CAMMS instrument to improve electric field uniformity, improve the alignment of the ion source and the mass analyzer with the detector, and increase the depth-of-focus to further facilitate alignment. A comparison of reconstructed spectra of a mixture of dry air and toluene at different electric fields was performed using the improved C-CAMMS prototype. A reduction in reconstruction artifacts compared to our proof-of-concept C-CAMMS instrument highlights the improved performance enabled by the design changes.

7.
Anal Chem ; 81(13): 5467-73, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19462968

RESUMO

A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

8.
J Am Soc Mass Spectrom ; 29(2): 360-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29052038

RESUMO

Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.

9.
J Law Biosci ; 3(3): 538-575, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28852538

RESUMO

Several forensic sciences, especially of the pattern-matching kind, are increasingly seen to lack the scientific foundation needed to justify continuing admission as trial evidence. Indeed, several have been abolished in the recent past. A likely next candidate for elimination is bitemark identification. A number of DNA exonerations have occurred in recent years for individuals convicted based on erroneous bitemark identifications. Intense scientific and legal scrutiny has resulted. An important National Academies review found little scientific support for the field. The Texas Forensic Science Commission recently recommended a moratorium on the admission of bitemark expert testimony. The California Supreme Court has a case before it that could start a national dismantling of forensic odontology. This article describes the (legal) basis for the rise of bitemark identification and the (scientific) basis for its impending fall. The article explains the general logic of forensic identification, the claims of bitemark identification, and reviews relevant empirical research on bitemark identification-highlighting both the lack of research and the lack of support provided by what research does exist. The rise and possible fall of bitemark identification evidence has broader implications-highlighting the weak scientific culture of forensic science and the law's difficulty in evaluating and responding to unreliable and unscientific evidence.

10.
J Am Soc Mass Spectrom ; 15(6): 769-76, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15144966

RESUMO

The use of laser ablation (LA) as a sample-introduction method for inductively coupled plasma mass spectrometry (ICP-MS) creates a powerful tool for trace elemental analysis. With this type of instrument, high analyte spatial resolution is possible in three dimensions with ng/g limits of detection and minimal sample consumption. Here, simultaneous detection is used to eliminate the correlated noise that plagues the ablation process. This benefit allows analyses to be performed with single laser pulses, resulting in improved depth resolution, even less sample consumption, and improved measurement precision. The new instrument includes an LA sample-introduction system coupled to an ICP ionization source and a Mattauch-Herzog mass spectrograph (MHMS) fitted with a novel array detector. With this instrument, absolute limits of detection are in the tens to hundreds of fg regime and isotope-ratio precision is better than 0.02% RSD with a one-hour integration period. Finally, depth-profile analysis has been performed with a depth resolution of 5 nm per ablation event.

11.
Forensic Sci Int ; 135(1): 53-9, 2003 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12893136

RESUMO

The improvised explosive triacetone triperoxide (TATP) was synthesized and characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Raman and infrared (IR) spectroscopy. Triacetone triperoxide was subsequently analyzed by ion mobility spectrometry (IMS) in positive ion mode, and detected as a cluster of three peaks with a drift time of the most intense peak at 13.06 ms. Triacetone triperoxide was then analyzed after dissolution in toluene, where a dramatic increase in peak intensity was observed, at a flight time of 12.56 ms (K0=2.71 cm2V(-1)s(-1)). Triacetone triperoxide was subsequently analyzed by coupling the ion mobility spectrometer to a triple quadrupole mass spectrometer, where a single peak at m/z of 223 atomic mass units identified the species present in the ion mobility spectra as being triacetone triperoxide.


Assuntos
Acetona , Peróxidos , Acetona/análogos & derivados , Acetona/química , Peróxidos/síntese química , Peróxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
12.
J Am Soc Mass Spectrom ; 21(1): 97-103, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19889553

RESUMO

An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer.

13.
Anal Chem ; 79(20): 7662-8, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17877420

RESUMO

In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously and continuously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.

14.
Anal Chem ; 78(13): 4319-25, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16808438

RESUMO

A second-generation Faraday-strip array detector has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph, thereby offering simultaneous acquisition of a range of mass-to-charge ratios. The second-generation device incorporates narrower, more closely spaced collectors than the earlier system. Furthermore, the new camera can acquire signal on all collectors at a frequency greater than 2 kHz and has the ability to independently adjust the gain level of each collector. Each collector can also be reset independently. With these improvements, limits of detection in the hundreds of picograms per liter for metals in solution have been obtained. Some additional features, such as a broader linear dynamic range (over 7 orders of magnitude), greater resolving power (up to 600), and improved isotope ratio accuracy were attained. In addition, isotope ratio precision as low as 0.018% RSD was achieved.

15.
J Synchrotron Radiat ; 12(Pt 5): 618-25, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16120985

RESUMO

Improved focal plane array detector systems are described which can provide improved readout speeds, random addressing and even be employed to simultaneously measure position, intensity and energy. This latter capability promises to rekindle interests in Laue techniques. Simulations of three varieties of foil mask spectrometer in both on- and off-axis configurations indicate that systems of stacked silicon detectors can provide energy measurements within 1% of the true value based on the use of single 'foils' and approximately 10000 photons. An eight-detector hybrid design can provide energy coverage from 4 to 60 keV. Energy resolution can be improved by increased integration time or higher flux experiments. An off-axis spectrometer design in which the angle between the incident beam and the detector system is 45 degrees results in a shift in the optimum energy response of the spectrometer system. In the case of a 200 microm-thick silicon absorber, the energy optimum shifts from 8.7 keV to 10.3 keV as the angle of incidence goes from 0 to 45 degrees. These new designs make better use of incident photons, lower the impact of source flicker through simultaneous rather than sequential collection of intensities, and improve the energy range relative to previously reported systems.


Assuntos
Desenho Assistido por Computador , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Difração de Raios X/instrumentação , Difração de Raios X/tendências , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Modelos Teóricos , Difração de Raios X/métodos
16.
Rapid Commun Mass Spectrom ; 19(1): 15-22, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15573417

RESUMO

A photoionization hydrogen laser time-of-flight mass spectrometer system (H2-TOFMS) has been evaluated for the rapid analysis of drugs of abuse and pharmaceutical agents extracted from prescription tablets and spiked urine samples. The spectra obtained using the H2-TOFMS showed primarily intact molecular ions (M+*) after introduction by a heated probe and irradiation with vacuum ultraviolet (VUV) photons from the laser. Samples analyzed by this technique required only a simple solid-phase extraction step; no chromatographic separation or derivatization was necessary to identify the drugs of abuse or pharmaceutical agents.


Assuntos
Acetaminofen/urina , Preparações Farmacêuticas/química , Humanos , Lasers , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta/métodos , Transtornos Relacionados ao Uso de Substâncias
17.
Inorg Chem ; 41(21): 5426-32, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12377037

RESUMO

A novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.8 ppm. Size-exclusion chromatography (SEC) using an inductively coupled plasma atomic emission spectrometer (ICP-AES) as the simultaneous arsenic-, selenium-, sulfur-, and carbon-specific detector revealed an arsenic-selenium moiety with an As:Se molar ratio of 1:2. Electrospray ionization mass spectrometry (ESI-MS) of the chromatographically purified compound showed a molecular mass peak at m/z 263 in the negative ion mode. Fragmentation of the parent ion (ESI-MS-MS) produced (CH(3))(2)As(-) and Se(2)(-) fragments. Arsenic and selenium extended X-ray absorption fine structure spectroscopy (EXAFS) of the purified species revealed two As-C interactions at 1.943 A and two As-Se interactions at 2.279 A. On the basis of these results this novel solution species is identified as the dimethyldiselenoarsinate anion.


Assuntos
Concentração de Íons de Hidrogênio , Cromatografia em Gel , Poluentes Ambientais/análise , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Radioisótopos de Selênio/química , Soluções
18.
Anal Chem ; 74(20): 5327-32, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12403588

RESUMO

A Mattauch-Herzog geometry mass spectrograph (MHMS) has been equipped with a novel array detector, the focal plane camera (FPC). The FPC consists of an array of gold Faraday cups, each coupled to its own integrator, with interrogation of the integrators performed by a multiplexer. The initial coupling of this instrument with a pin-type glow discharge source has provided limits of detection in the single to hundreds of nanograms per gram regime; isotope ratio accuracy and precision better than 5% error and 0.2% RSD, respectively; and a linear dynamic range of at least 6 orders of magnitude. A current weakness of the FPC is its pixel size, which limits both sensitivity and baseline resolution (to R = 130). The minimum data acquisition time for multiple images at present is 1 ms/image, with a dead time of 3.2 ms between images, which will limit the ability of the FPC to monitor extremely short transient signals.

19.
Anal Chem ; 76(9): 2531-6, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15117194

RESUMO

A novel charge-sensitive detector array, termed the focal plane camera (FPC), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) with an inductively coupled plasma ionization source. The FPC employs an array of gold Faraday cups, each with its own charge-integrating circuit that allows the simultaneous detection of several m/z ratios. The ion-sampling interface of the MHMS has been redesigned to provide better heat transfer away from the sampler and skimmer cones and to reduce the negative effects of turbulent gas flows around the plasma. The instrument has produced limits of detection in the tens to hundreds of parts per quadrillion regime and isotope ratio accuracy and precision of 5% error and 0.007% RSD, respectively. Limits of detection with the FPC are comparable to those obtained with a single-channel secondary electron multiplier (SEM). However, the isotope ratio accuracy and precision are better with the FPC than when the SEM is employed. The dynamic range has been shown to be linear over 7 orders of magnitude.

20.
Chem Res Toxicol ; 17(8): 999-1006, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15310232

RESUMO

Clinical chelation therapy of mercury poisoning generally uses one or both of two drugs--meso-dimercaptosuccinic acid (DMSA) and dimercaptopropanesulfonic acid (DMPS), commercially sold as Chemet and Dimaval, respectively. We have used a combination of mercury L(III)-edge X-ray absorption spectroscopy and density functional theory calculations to investigate the chemistry of interaction of mercuric ions with each of these chelation therapy drugs. We show that neither DMSA nor DMPS forms a true chelate complex with mercuric ions and that these drugs should be considered suboptimal for their clinical task of binding mercuric ions. We discuss the design criteria for a mercuric specific chelator molecule or "custom chelator", which might form the basis for an improved clinical treatment.


Assuntos
Quelantes/química , Terapia por Quelação , Intoxicação por Mercúrio/tratamento farmacológico , Mercúrio/química , Succímero/química , Unitiol/química , Quelantes/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Análise Espectral/métodos , Succímero/metabolismo , Succímero/uso terapêutico , Unitiol/metabolismo , Unitiol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa