Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytogenet Genome Res ; 162(11-12): 657-664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37054691

RESUMO

Cytogenetic studies demonstrated that unstable chromosomal sites in armored catfishes (Loricariidae) triggered intense karyotypic diversification, mainly derived from Robertsonian rearrangements. In Loricariinae, the presence of ribosomal DNA (rDNA) clusters and their flanking repeated regions (such as microsatellites or partial transposable element sequences) was proposed to facilitate chromosomal rearrangements. Hence, this study aimed to characterize the numerical chromosomal polymorphism observed in Rineloricaria pentamaculata and evaluate the chromosomal rearrangements which originated diploid chromosome number (2n) variation, from 56 to 54. Our data indicate a centric fusion event between acrocentric chromosomes of pairs 15 and 18, bearing 5S rDNA sites on their short (p) arms. This chromosome fusion established the numerical polymorphism, decreasing the 2n from original 56 (karyomorph A) to 55 in karyomorph B and 54 in karyomorph C. Although vestiges of telomeric sequences were evidenced at the fusion point, no 5S rDNA was detected in this region. The acrocentric chromosomes involved in the origin of the fusion were enriched with (CA)n and (GA)n microsatellites. Repetitive sequences in the acrocentric chromosomes subtelomeres have facilitated the rearrangement. Our study thus reinforces the view on the important role of particular repetitive DNA classes in promoting chromosome fusions which frequently drive Rineloricaria karyotype evolution.

2.
Biology (Basel) ; 10(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34571799

RESUMO

A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.

3.
Genes (Basel) ; 12(2)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578790

RESUMO

In the fish genus Hoplias, two major general groups can be found, one of which is formed by the "common trahiras" (Hoplias malabaricus group) and the other by the "giant trahiras" (Hoplias lacerdae group, in addition to Hoplias aimara), which usually comprises specimens of larger body size. Previous investigations from the giant trahiras group recovered 2n = 50 meta/submetacentric chromosomes and no sex chromosome differentiation, indicating a probable conservative pattern for their karyotype organization. Here, we conducted comparative cytogenetic studies in six giant trahiras species, two of them for the first time. We employed standard and advanced molecular cytogenetics procedures, including comparative genomic hybridization (CGH), as well as genomic assessments of diversity levels and phylogenetic relationships among them. The results strongly suggest that the giant trahiras have a particular and differentiated evolutionary pathway inside the Hoplias genus. While these species share the same 2n and karyotypes, their congeneric species of the H. malabaricus group show a notable chromosomal diversity in number, morphology, and sex chromosome systems. However, at the same time, significant changes were characterized at their inner chromosomal level, as well as in their genetic diversity, highlighting their current relationships resulting from different evolutionary histories.


Assuntos
Caraciformes/genética , Variação Genética , Filogenia , Cromossomos Sexuais/química , Animais , Evolução Biológica , Tamanho Corporal , Brasil , Caraciformes/classificação , Hibridização Genômica Comparativa , Feminino , Cariótipo , Cariotipagem , Masculino
4.
Genes (Basel) ; 11(10)2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050411

RESUMO

The armored Harttia catfishes present great species diversity and remarkable cytogenetic variation, including different sex chromosome systems. Here we analyzed three new species, H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments. Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂). Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic contents, indicating a probable common origin. The remarkable karyotypic variation, including sex chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype differentiation and sex chromosome evolution among lower vertebrates.


Assuntos
Peixes-Gato/genética , Evolução Molecular , Variação Genética , Genoma , Cromossomos Sexuais/genética , Animais , DNA Ribossômico/análise , DNA Ribossômico/genética , Genômica , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa