Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
BMC Biol ; 22(1): 51, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414014

RESUMO

BACKGROUND: Lymphangiogenesis, the formation of lymphatic vessels, is tightly linked to the development of the venous vasculature, both at the cellular and molecular levels. Here, we identify a novel role for Sorbs1, the founding member of the SoHo family of cytoskeleton adaptor proteins, in vascular and lymphatic development in the zebrafish. RESULTS: We show that Sorbs1 is required for secondary sprouting and emergence of several vascular structures specifically derived from the axial vein. Most notably, formation of the precursor parachordal lymphatic structures is affected in sorbs1 mutant embryos, severely impacting the establishment of the trunk lymphatic vessel network. Interestingly, we show that Sorbs1 interacts with the BMP pathway and could function outside of Vegfc signaling. Mechanistically, Sorbs1 controls FAK/Src signaling and subsequently impacts on the cytoskeleton processes regulated by Rac1 and RhoA GTPases. Inactivation of Sorbs1 altered cell-extracellular matrix (ECM) contacts rearrangement and cytoskeleton dynamics, leading to specific defects in endothelial cell migratory and adhesive properties. CONCLUSIONS: Overall, using in vitro and in vivo assays, we identify Sorbs1 as an important regulator of venous and lymphatic angiogenesis independently of the Vegfc signaling axis. These results provide a better understanding of the complexity found within context-specific vascular and lymphatic development.


Assuntos
Vasos Linfáticos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo
2.
Angiogenesis ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780883

RESUMO

The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.

3.
Nucleic Acids Res ; 50(22): 12768-12789, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477312

RESUMO

Genotoxic agents, that are used in cancer therapy, elicit the reprogramming of the transcriptome of cancer cells. These changes reflect the cellular response to stress and underlie some of the mechanisms leading to drug resistance. Here, we profiled genome-wide changes in pre-mRNA splicing induced by cisplatin in breast cancer cells. Among the set of cisplatin-induced alternative splicing events we focused on COASY, a gene encoding a mitochondrial enzyme involved in coenzyme A biosynthesis. Treatment with cisplatin induces the production of a short isoform of COASY lacking exons 4 and 5, whose depletion impedes mitochondrial function and decreases sensitivity to cisplatin. We identified RBM39 as a major effector of the cisplatin-induced effect on COASY splicing. RBM39 also controls a genome-wide set of alternative splicing events partially overlapping with the cisplatin-mediated ones. Unexpectedly, inactivation of RBM39 in response to cisplatin involves its interaction with the AP-1 family transcription factor c-Jun that prevents RBM39 binding to pre-mRNA. Our findings therefore uncover a novel cisplatin-induced interaction between a splicing regulator and a transcription factor that has a global impact on alternative splicing and contributes to drug resistance.


Assuntos
Processamento Alternativo , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação a RNA , Fatores de Transcrição , Processamento Alternativo/genética , Cisplatino/farmacologia , Cisplatino/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Animais
4.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
5.
Nucleic Acids Res ; 49(9): 5038-5056, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34009296

RESUMO

ERG family proteins (ERG, FLI1 and FEV) are a subfamily of ETS transcription factors with key roles in physiology and development. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 regulates both transcription and alternative splicing of pre-messenger RNAs. However, whether wild-type ERG family proteins might regulate splicing is unknown. Here, we show that wild-type ERG proteins associate with spliceosomal components, are found on nascent RNAs, and induce alternative splicing when recruited onto a reporter minigene. Transcriptomic analysis revealed that ERG and FLI1 regulate large numbers of alternative spliced exons (ASEs) enriched with RBFOX2 motifs and co-regulated by this splicing factor. ERG and FLI1 are associated with RBFOX2 via their conserved carboxy-terminal domain, which is present in EWS-FLI1. Accordingly, EWS-FLI1 is also associated with RBFOX2 and regulates ASEs enriched in RBFOX2 motifs. However, in contrast to wild-type ERG and FLI1, EWS-FLI1 often antagonizes RBFOX2 effects on exon inclusion. In particular, EWS-FLI1 reduces RBFOX2 binding to the ADD3 pre-mRNA, thus increasing its long isoform, which represses the mesenchymal phenotype of Ewing sarcoma cells. Our findings reveal a RBFOX2-mediated splicing regulatory function of wild-type ERG family proteins, that is altered in EWS-FLI1 and contributes to the Ewing sarcoma cell phenotype.


Assuntos
Processamento Alternativo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células HeLa , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Domínios Proteicos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Regulador Transcricional ERG/química , Regulador Transcricional ERG/metabolismo
6.
BMC Biol ; 20(1): 72, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331218

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are released by nearly every cell type and have attracted much attention for their ability to transfer protein and diverse RNA species from donor to recipient cells. Much attention has been given so far to the features of EV short RNAs such as miRNAs. However, while the presence of mRNA and long noncoding RNA (lncRNA) transcripts in EVs has also been reported by multiple different groups, the properties and function of these longer transcripts have been less thoroughly explored than EV miRNA. Additionally, the impact of EV export on the transcriptome of exporting cells has remained almost completely unexamined. Here, we globally investigate mRNA and lncRNA transcripts in endothelial EVs in multiple different conditions. RESULTS: In basal conditions, long RNA transcripts enriched in EVs have longer than average half-lives and distinctive stability-related sequence and structure characteristics including shorter transcript length, higher exon density, and fewer 3' UTR A/U-rich elements. EV-enriched long RNA transcripts are also enriched in HNRNPA2B1 binding motifs and are impacted by HNRNPA2B1 depletion, implicating this RNA-binding protein in the sorting of long RNA to EVs. After signaling-dependent modification of the cellular transcriptome, we observed that, unexpectedly, the rate of EV enrichment relative to cells was altered for many mRNA and lncRNA transcripts. This change in EV enrichment was negatively correlated with intracellular abundance, with transcripts whose export to EVs increased showing decreased abundance in cells and vice versa. Correspondingly, after treatment with inhibitors of EV secretion, levels of mRNA and lncRNA transcripts that are normally highly exported to EVs increased in cells, indicating a measurable impact of EV export on the long RNA transcriptome of the exporting cells. Compounds with different mechanisms of inhibition of EV secretion affected the cellular transcriptome differently, suggesting the existence of multiple EV subtypes with different long RNA profiles. CONCLUSIONS: We present evidence for an impact of EV physiology on the characteristics of EV-producing cell transcriptomes. Our work suggests a new paradigm in which the sorting and packaging of transcripts into EVs participate, together with transcription and RNA decay, in controlling RNA homeostasis and shape the cellular long RNA abundance profile.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Movimento Celular , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell Mol Life Sci ; 77(21): 4413-4428, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31894362

RESUMO

The chemotherapeutic drug epirubicin increases the exosomal export of miR-503 in endothelial cells. To understand the mechanisms behind this process, we transfected endothelial cells with miR-503 carrying a biotin tag. Then, we pulled-down the proteins interacting with miR-503 and studied their role in microRNA exosomal export. A total of four different binding partners were identified by mass spectrometry and validated by western blotting and negative controls, among them ANXA2 and hnRNPA2B1. Using knock-down systems combined with pull-down analysis, we determined that epirubicin mediates the export of miR-503 by disrupting the interaction between hnRNPA2B1 and miR-503. Then, both ANXA2 and miR-503 are sorted into exosomes while hnRNPA2B1 is relocated into the nucleus. The combination of these processes culminates in the increased export of miR-503. These results suggest, for the first time, that RNA-binding proteins can negatively regulate the exosomal sorting of microRNAs.


Assuntos
Células Endoteliais/metabolismo , Exossomos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , MicroRNAs/metabolismo , Anexina A2/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Transporte de RNA
8.
PLoS Genet ; 14(1): e1007195, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381707

RESUMO

Rasa3 is a GTPase activating protein of the GAP1 family which targets R-Ras and Rap1. Although catalytic inactivation or deletion of Rasa3 in mice leads to severe hemorrhages and embryonic lethality, the biological function and cellular location of Rasa3 underlying these defects remains unknown. Here, using a combination of loss of function studies in mouse and zebrafish as well as in vitro cell biology approaches, we identify a key role for Rasa3 in endothelial cells and vascular lumen integrity. Specific ablation of Rasa3 in the mouse endothelium, but not in megakaryocytes and platelets, lead to embryonic bleeding and death at mid-gestation, recapitulating the phenotype observed in full Rasa3 knock-out mice. Reduced plexus/sprouts formation and vascular lumenization defects were observed when Rasa3 was specifically inactivated in mouse endothelial cells at the postnatal or adult stages. Similar results were obtained in zebrafish after decreasing Rasa3 expression. In vitro, depletion of Rasa3 in cultured endothelial cells increased ß1 integrin activation and cell adhesion to extracellular matrix components, decreased cell migration and blocked tubulogenesis. During migration, these Rasa3-depleted cells exhibited larger and more mature adhesions resulting from a perturbed dynamics of adhesion assembly and disassembly which significantly increased their life time. These defects were due to a hyperactivation of the Rap1 GTPase and blockade of FAK/Src signaling. Finally, Rasa3-depleted cells showed reduced turnover of VE-cadherin-based adhesions resulting in more stable endothelial cell-cell adhesion and decreased endothelial permeability. Altogether, our results indicate that Rasa3 is a critical regulator of Rap1 in endothelial cells which controls adhesions properties and vascular lumen integrity; its specific endothelial cell inactivation results in occluded blood vessels, hemorrhages and early embryonic death in mouse, mimicking thus the Rasa3-/- mouse phenotype.


Assuntos
Permeabilidade Capilar/genética , Adesão Celular/genética , Células Endoteliais/fisiologia , Endotélio Vascular/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Megacariócitos/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais , Peixe-Zebra , Proteínas rap1 de Ligação ao GTP/genética
9.
Thorax ; 75(10): 870-881, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759383

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology and cure. Recent studies have reported a dysregulation of exosomal microRNAs (miRs) in the IPF context. However, the impact of IPF-related exosomal miRs on the progression of pulmonary fibrosis is unknown. METHODS: Two independent cohorts were enrolled at the ambulatory care polyclinic of Liège University. Exosomes from sputum were obtained from 19 patients with IPF and 23 healthy subjects (HSs) (cohort 1), and the ones from plasma derived from 14 patients with IPF and 14 HSs (cohort 2). Exosomal miR expression was performed by quantitative reverse transcription-PCR. The functional role of exosomal miRs was assessed in vitro by transfecting miR mimics in human alveolar epithelial cells and lung fibroblasts. RESULTS: Exosomal miR analysis showed that miR-142-3p was significantly upregulated in sputum and plasma of patients with IPF (8.06-fold, p<0.0001; 1.64 fold, p=0.008, respectively). Correlation analysis revealed a positive association between exosomal miR-142-3p and the percentage of macrophages from sputum of patients with IPF (r=0.576, p=0.012), suggesting macrophage origin of exosomal miR-142-3p upregulation. The overexpression of miR-142-3p in alveolar epithelial cells and lung fibroblasts was able to reduce the expression of transforming growth factor ß receptor 1 (TGFß-R1) and profibrotic genes. Furthermore, exosomes isolated from macrophages present antifibrotic properties due in part to the repression of TGFß-R1 by miR-142-3p transfer in target cells. DISCUSSION: Our results suggest that macrophage-derived exosomes may fight against pulmonary fibrosis progression via the delivery of antifibrotic miR-142-3 p to alveolar epithelial cells and lung fibroblasts.


Assuntos
Células Epiteliais Alveolares/metabolismo , Exossomos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
10.
Chem Rev ; 118(8): 4339-4364, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29251915

RESUMO

Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.


Assuntos
Precursores de RNA/genética , Splicing de RNA/fisiologia , RNA Mensageiro/genética , Fatores de Transcrição/fisiologia , Transcrição Gênica , DNA/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo
11.
Thorax ; 74(3): 309-312, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30244194

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing interstitial lung disease of unknown aetiology which leads rapidly to death. As diagnosis of IPF is complex, we aimed to characterise microRNA (miRNA) content of exosomes from sputum of patients with IPF. Using miRNA quantitative PCR array, we found a substantial dysregulation of sputum exosomal miRNA levels between patients with IPF and healthy subjects and identified a unique signature of three miRNAs. Interestingly, we found a negative correlation between miR-142-3p and diffusing capacity of the lungs for carbon monoxide/alveolar volume. This is the first characterisation of miRNA content of sputum-derived exosomes in IPF that identified promising biomarkers for diagnosis and disease severity.


Assuntos
Exossomos/metabolismo , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/metabolismo , MicroRNAs/metabolismo , Escarro/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Fibrose Pulmonar Idiopática/etiologia , Masculino , Sensibilidade e Especificidade
12.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793951

RESUMO

ORF9p (homologous to herpes simplex virus 1 [HSV-1] VP22) is a varicella-zoster virus (VZV) tegument protein essential for viral replication. Even though its precise functions are far from being fully described, a role in the secondary envelopment of the virus has long been suggested. We performed a yeast two-hybrid screen to identify cellular proteins interacting with ORF9p that might be important for this function. We found 31 ORF9p interaction partners, among which was AP1M1, the µ subunit of the adaptor protein complex 1 (AP-1). AP-1 is a heterotetramer involved in intracellular vesicle-mediated transport and regulates the shuttling of cargo proteins between endosomes and the trans-Golgi network via clathrin-coated vesicles. We confirmed that AP-1 interacts with ORF9p in infected cells and mapped potential interaction motifs within ORF9p. We generated VZV mutants in which each of these motifs was individually impaired and identified leucine 231 in ORF9p to be critical for the interaction with AP-1. Disrupting ORF9p binding to AP-1 by mutating leucine 231 to alanine in ORF9p strongly impaired viral growth, most likely by preventing efficient secondary envelopment of the virus. Leucine 231 is part of a dileucine motif conserved among alphaherpesviruses, and we showed that VP22 of Marek's disease virus and HSV-2 also interacts with AP-1. This indicates that the function of this interaction in secondary envelopment might be conserved as well.IMPORTANCE Herpesviruses are responsible for infections that, especially in immunocompromised patients, can lead to severe complications, including neurological symptoms and strokes. The constant emergence of viral strains resistant to classical antivirals (mainly acyclovir and its derivatives) pleads for the identification of new targets for future antiviral treatments. Cellular adaptor protein (AP) complexes have been implicated in the correct addressing of herpesvirus glycoproteins in infected cells, and the discovery that a major constituent of the varicella-zoster virus tegument interacts with AP-1 reveals a previously unsuspected role of this tegument protein. Unraveling the complex mechanisms leading to virion production will certainly be an important step in the discovery of future therapeutic targets.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Herpesvirus Humano 3/metabolismo , Proteínas Virais/metabolismo , Rede trans-Golgi/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Vesículas Revestidas por Clatrina/genética , Vesículas Revestidas por Clatrina/virologia , Herpesvirus Humano 3/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Virais/genética , Rede trans-Golgi/genética , Rede trans-Golgi/virologia
13.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 113-124, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984090

RESUMO

Glioblastomas are the deadliest type of brain cancer and are frequently associated with poor prognosis and a high degree of recurrence despite removal by surgical resection and treatment by chemo- and radio-therapy. Photodynamic therapy (PDT) is a treatment well known to induce mainly necrotic and apoptotic cell death in solid tumors. 5-Aminolevulinic acid (5-ALA)-based PDT was recently shown to sensitize human glioblastoma cells (LN-18) to a RIP3 (Receptor Interacting Protein 3)-dependent cell death which is counter-acted by activation of autophagy. These promising results led us to investigate the pathways involved in cell death and survival mechanisms occurring in glioblastoma following PDT. In the present study, we describe a new TSC2 (Tuberous Sclerosis 2)-dependent survival pathway implicating MK2 (MAPKAPK2) kinase and 14-3-3 proteins which conducts to the activation of a pro-survival autophagy. Moreover, we characterized a new RIP3/TSC2 complex where RIP3 is suggested to promote cell death by targeting TSC2-dependent survival pathway. These results highlight (i) a new role of TSC2 to protect glioblastoma against PDT-induced cell death and (ii) TSC2 and 14-3-3 as new RIP3 partners.


Assuntos
Proteínas 14-3-3/genética , Ácido Aminolevulínico/farmacologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroglia/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Ácido Aminolevulínico/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luz , Neuroglia/metabolismo , Neuroglia/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
14.
EMBO J ; 32(18): 2491-503, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23955003

RESUMO

To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion.


Assuntos
Endotélio Vascular/fisiologia , Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Neovascularização Fisiológica/fisiologia , Proteína Fosfatase 2/metabolismo , Grau de Desobstrução Vascular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Adesão Celular/fisiologia , Colágeno , Combinação de Medicamentos , Imunofluorescência , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Processamento de Imagem Assistida por Computador , Laminina , Microscopia Confocal , Proteoglicanas , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Grau de Desobstrução Vascular/genética , Peixe-Zebra
15.
Nature ; 473(7346): 234-8, 2011 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-21499261

RESUMO

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD(+)-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


Assuntos
Células Endoteliais/enzimologia , Regulação da Expressão Gênica , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Acetilação , Animais , Células Endoteliais/citologia , Técnicas de Inativação de Genes , Inativação Gênica , Células HEK293 , Humanos , Camundongos , Mutação , Receptor Notch1/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
16.
BMC Cancer ; 16: 239, 2016 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26993100

RESUMO

BACKGROUND: Carbonic anhydrase IX (CA IX) is a tumor-associated, highly active, transmembrane carbonic anhydrase isoform regulated by hypoxia and implicated in pH control and adhesion-migration-invasion. CA IX ectodomain (ECD) is shed from the tumor cell surface to serum/plasma of patients, where it can signify cancer prognosis. We previously showed that the CA IX ECD release is mediated by disintegrin and metalloproteinase ADAM17. Here we investigated the CA IX ECD shedding in tumor cells undergoing apoptosis in response to cytotoxic drugs, including cycloheximide and doxorubicin. METHODS: Presence of cell surface CA IX was correlated to the extent of apoptosis by flow cytometry in cell lines with natural or ectopic CA IX expression. CA IX ECD level was assessed by ELISA using CA IX-specific monoclonal antibodies. Effect of recombinant CA IX ECD on the activation of molecular pathways was evaluated using the cell-based dual-luciferase reporter assay. RESULTS: We found a significantly lower occurrence of apoptosis in the CA IX-positive cell subpopulation than in the CA IX-negative one. We also demonstrated that the cell-surface CA IX level dropped during the death progress due to an increased ECD shedding, which required a functional ADAM17. Inhibitors of metalloproteinases reduced CA IX ECD shedding, but not apoptosis. The CA IX ECD release induced by cytotoxic drugs was connected to elevated expression of CA IX in the surviving fraction of cells. Moreover, an externally added recombinant CA IX ECD activated a pathway driven by the Nanog transcription factor implicated in epithelial-mesenchymal transition and stemness. CONCLUSIONS: These findings imply that the increased level of the circulating CA IX ECD might be useful as an indicator of an effective antitumor chemotherapy. Conversely, elevated CA IX ECD might generate unwanted effects through autocrine/paracrine signaling potentially contributing to resistance and tumor progression.


Assuntos
Proteína ADAM17/genética , Anidrase Carbônica IX/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteína ADAM17/metabolismo , Anticorpos Monoclonais/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Anidrase Carbônica IX/administração & dosagem , Anidrase Carbônica IX/metabolismo , Hipóxia Celular/genética , Cicloeximida/administração & dosagem , Feminino , Células HeLa , Humanos , Masculino , Neoplasias/patologia
17.
BMC Cancer ; 16: 335, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229929

RESUMO

BACKGROUND: Perturbed genotypes in cancer can now be identified by whole genome sequencing of large number of diverse tumor samples, and observed gene mutations can be used for prognosis and classification of cancer subtypes. Although mutations in a few causative genes are directly linked to key signaling pathways perturbation, a global understanding of how known cancer genes drive oncogenesis in human is difficult to assess. METHODS: We collected available information about mutated genes in Acute Lymphoblastic Leukemia (ALL). Validated human protein interactions (PPI) were collected from IntAct, HPRD and BioGRID interactomics databases, or obtained using yeast two-hybrid screening assay. RESULTS: We have mapped interconnections between 116 cancer census gene products associated with ALL. Combining protein-protein interactions data and cancer-specific gene mutations information, we observed that 63 ALL-gene products are interconnected and identified 37 human proteins interacting with at least 2 ALL-gene products. We highlighted exclusive and coexistence genetic alterations in key signaling pathways including the PI3K/AKT and the NOTCH pathways. We then used different cell lines and reporter assay systems to validate the involvement of EXT1 in the Notch pathway. CONCLUSION: We propose that novel ALL-gene candidates can be identified based on their functional association with well-known cancer genes. We identified EXT1, a gene not previously linked to ALL via mutations, as a common interactor of NOTCH1 and FBXW7 regulating the NOTCH pathway in an FBXW7-dependend manner.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Notch1/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Mapeamento de Interação de Proteínas , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra
18.
Proc Natl Acad Sci U S A ; 110(31): 12655-60, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23852730

RESUMO

The positive transcription elongation factor b (P-TEFb) is involved in physiological and pathological events including inflammation, cancer, AIDS, and cardiac hypertrophy. The balance between its active and inactive form is tightly controlled to ensure cellular integrity. We report that the transcriptional repressor CTIP2 is a major modulator of P-TEFb activity. CTIP2 copurifies and interacts with an inactive P-TEFb complex containing the 7SK snRNA and HEXIM1. CTIP2 associates directly with HEXIM1 and, via the loop 2 of the 7SK snRNA, with P-TEFb. In this nucleoprotein complex, CTIP2 significantly represses the Cdk9 kinase activity of P-TEFb. Accordingly, we show that CTIP2 inhibits large sets of P-TEFb- and 7SK snRNA-sensitive genes. In hearts of hypertrophic cardiomyopathic mice, CTIP2 controls P-TEFb-sensitive pathways involved in the establishment of this pathology. Overexpression of the ß-myosin heavy chain protein contributes to the pathological cardiac wall thickening. The inactive P-TEFb complex associates with CTIP2 at the MYH7 gene promoter to repress its activity. Taken together, our results strongly suggest that CTIP2 controls P-TEFb function in physiological and pathological conditions.


Assuntos
Cardiomegalia/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética
19.
Mol Cancer ; 13: 108, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24886454

RESUMO

BACKGROUND: DUSP3 phosphatase, also known as Vaccinia-H1 Related (VHR) phosphatase, encoded by DUSP3/Dusp3 gene, is a relatively small member of the dual-specificity protein phosphatases. In vitro studies showed that DUSP3 is a negative regulator of ERK and JNK pathways in several cell lines. On the other hand, DUSP3 is implicated in human cancer. It has been alternatively described as having tumor suppressive and oncogenic properties. Thus, the available data suggest that DUSP3 plays complex and contradictory roles in tumorigenesis that could be cell type-dependent. Since most of these studies were performed using recombinant proteins or in cell-transfection based assays, the physiological function of DUSP3 has remained elusive. RESULTS: Using immunohistochemistry on human cervical sections, we observed a strong expression of DUSP3 in endothelial cells (EC) suggesting a contribution for this phosphatase to EC functions. DUSP3 downregulation, using RNA interference, in human EC reduced significantly in vitro tube formation on Matrigel and spheroid angiogenic sprouting. However, this defect was not associated with an altered phosphorylation of the documented in vitro DUSP3 substrates, ERK1/2, JNK1/2 and EGFR but was associated with an increased PKC phosphorylation. To investigate the physiological function of DUSP3, we generated Dusp3-deficient mice by homologous recombination. The obtained DUSP3-/- mice were healthy, fertile, with no spontaneous phenotype and no vascular defect. However, DUSP3 deficiency prevented neo-vascularization of transplanted b-FGF containing Matrigel and LLC xenograft tumors as evidenced by hemoglobin (Hb) and FITC-dextran quantifications. Furthermore, we found that DUSP3 is required for b-FGF-induced microvessel outgrowth in the aortic ring assay. CONCLUSIONS: All together, our data identify DUSP3 as a new important player in angiogenesis.


Assuntos
Carcinoma Pulmonar de Lewis/genética , Fosfatase 3 de Especificidade Dupla/genética , Neovascularização Fisiológica/genética , Animais , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Colo do Útero/irrigação sanguínea , Colo do Útero/metabolismo , Colo do Útero/patologia , Colágeno , Combinação de Medicamentos , Fosfatase 3 de Especificidade Dupla/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Laminina , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Patológica/prevenção & controle , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteoglicanas , Transdução de Sinais
20.
Biochem J ; 455(2): 195-206, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23905686

RESUMO

PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Linhagem Celular , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Gambás , Fosfatidilinositol 3-Quinase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa