Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 405(22): 6933-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23828208

RESUMO

We provide experimental and theoretical evidence that the primary ionization process in the dopant-assisted varieties of the atmospheric pressure ionization methods atmospheric pressure photoionization and atmospheric pressure laser ionization in typical liquid chromatography-mass spectrometry settings is--as suggested in the literature--dopant radical cation formation. However, instead of direct dopant radical cation-analyte interaction--the broadly accepted subsequent step in the reaction cascade leading to protonated analyte molecules--rapid thermal equilibration with ion source background water or liquid chromatography solvents through dopant ion-molecule cluster formation occurs. Fast intracluster chemistry then leads to almost instantaneous proton-bound water/solvent cluster generation. These clusters interact either directly with analytes by ligand switching or association reactions, respectively, or further downstream in the intermediate-pressure regions in the ion transfer stages of the mass spectrometer via electrical-field-driven collisional decomposition reactions finally leading to the predominantly observed bare protonated analyte molecules [M + H](+).

2.
Rapid Commun Mass Spectrom ; 26(17): 1923-33, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22847690

RESUMO

RATIONALE: The ionization mechanisms operative in negative ion atmospheric pressure mass spectrometry are far from being properly understood. In an excess of oxygen superoxide (O(2)(-)) is generally the primary charge-carrying species that is generated. However, subsequent reactions leading to the finally detected ion signals remain obscure. METHODS: Since adiabatic expansion induced cluster growth and collision-induced dissociation (CID) processes rendered a representative sampling of ion distributions present in the source difficult, a custom-built thermally sampling time-of-flight mass spectrometer was used for the investigations. Using atmospheric pressure laser ionization of toluene as the reagent gas, high yields of thermal electrons were observed, but only negligible amounts of by-products. Ab initio calculations for individual ion/molecule reaction pathways were performed. RESULTS: Electron capture by molecular oxygen resulted in the formation of subsequent superoxide water clusters as well as distinct analyte-adduct ions. By adjusting the extent of CID within the ion optical stages of the mass spectrometer, the cluster distribution changes to smaller cluster sizes and the analyte signals strongly shifted towards M(-) or [M-H](-). The observed superoxide water cluster distribution was close to thermal. The theoretical results confirmed the experimental findings. CONCLUSIONS: In negative atmospheric pressure mass spectrometry the water concentration in the ion source (determining the ionization efficiency) and the CID energy provided through electrical fields (determining the ion distribution) are primary, critical parameters for the observed overall ionization mechanism and efficiency.

3.
J Am Soc Mass Spectrom ; 33(9): 1678-1691, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36001770

RESUMO

Glass or metal inlet capillaries are commonly used for flow restriction in atmospheric pressure ionization mass spectrometers. They exhibit a high ion transmission rate and stability at most operating conditions. However, transferring unipolar currents of ions through inlet capillaries can lead to sudden signal dropouts or drifts of the signal intensity, particularly when materials of different conductivity are in contact with the capillary duct. Molecular layers of water and other gases such as liquid chromatography solvents always form on the surfaces of inlet capillaries at atmospheric pressure ionization conditions. These surface layers play a major role in ion transmission and the occurrence of charging effects, as ions adsorb on the capillary walls as well, charging the walls to electric potentials of up to kilovolts and eventually leading to a hindrance of ion transport into or through the capillary duct. In this work, surface charging effects are reported in dependence on the capillary material, i.e., borosilicate glass, (reduced) lead silicate, quartz, and metal. Low electrical conductance materials show a more pronounced long-term signal drift (e.g., quartz), while higher electrical conductance materials lead to stable long-term behavior.

4.
J Am Soc Mass Spectrom ; 27(9): 1550-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27245455

RESUMO

In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min(-1) to 1.6 L·min(-1) under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions. Graphical Abstract ᅟ.

5.
Rev Sci Instrum ; 85(1): 014102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517784

RESUMO

In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

6.
J Am Soc Mass Spectrom ; 25(3): 329-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24399666

RESUMO

We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.


Assuntos
Nitrofenóis/análise , Nitrofenóis/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Pressão Atmosférica , Elétrons , Desenho de Equipamento , Cinética , Oxirredução
7.
J Am Soc Mass Spectrom ; 25(8): 1310-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850441

RESUMO

It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.


Assuntos
Ionização do Ar , Pressão Atmosférica , Modelos Químicos , Ionização do Ar/efeitos da radiação , Fenômenos Químicos/efeitos dos fármacos , Indicadores e Reagentes/química , Indicadores e Reagentes/efeitos da radiação , Luz , Processos Fotoquímicos , Análise Espaço-Temporal , Termodinâmica
8.
J Am Soc Mass Spectrom ; 24(4): 632-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23456889

RESUMO

For the comprehensive simulation of ion trajectories including reactive collisions at elevated pressure conditions, a chemical reaction simulation (RS) extension to the popular SIMION software package was developed, which is based on the Monte Carlo statistical approach. The RS extension is of particular interest to SIMION users who wish to simulate ion trajectories in collision dominated environments such as atmospheric pressure ion sources, ion guides (e.g., funnels, transfer multi poles), chemical reaction chambers (e.g., proton transfer tubes), and/or ion mobility analyzers. It is well known that ion molecule reaction rate constants frequently reach or exceed the collision limit obtained from kinetic gas theory. Thus with a typical dwell time of ions within the above mentioned devices in the ms range, chemical transformation reactions are likely to occur. In other words, individual ions change critical parameters such as mass, mobility, and chemical reactivity en passage to the analyzer, which naturally strongly affects their trajectories. The RS method simulates elementary reaction events of individual ions reflecting the behavior of a large ensemble by a representative set of simulated reacting particles. The simulation of the proton bound water cluster reactant ion peak (RIP) in ion mobility spectrometry (IMS) was chosen as a benchmark problem. For this purpose, the RIP was experimentally determined as a function of the background water concentration present in the IMS drift tube. It is shown that simulation and experimental data are in very good agreement, demonstrating the validity of the method.

10.
J Am Soc Mass Spectrom ; 22(11): 2070-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21952756

RESUMO

We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa